| 1 |
赵琳琳, 吴安彪, 袁野, 等. 位置社交网络上的图表示学习. 计算机学报, 2022, 45 (4): 838- 857.
|
|
ZHAO L L , WU A B , YUAN Y , et al. Graph representation learning on location-based social networks. Chinese Journal of Computers, 2022, 45 (4): 838- 857.
|
| 2 |
YU J L, YIN H Z, LI J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]//Proceedings of the Web Conference 2021. New York, USA: ACM Press, 2021: 413-424.
|
| 3 |
YANG D Q , QU B Q , YANG J , et al. LBSN2Vec: heterogeneous hypergraph embedding for location-based social networks. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (4): 1843- 1855.
|
| 4 |
LUNG R I , GASKÓ N , SUCIU M A . A hypergraph model for representing scientific output. Scientometrics, 2018, 117 (3): 1361- 1379.
|
| 5 |
FENG S , HEATH E , JEFFERSON B , et al. Hypergraph models of biological networks to identify genes critical to pathogenic viral response. BMC Bioinformatics, 2021, 22 (1): 287.
|
| 6 |
RASHID M A , AHMAD S , SIDDIQUI M K , et al. An analysis of eccentricity-based invariants for biochemical hypernetworks. Complexity, 2021 (1): 1974642.
|
| 7 |
张正康, 杨丹, 聂铁铮, 等. 基于图结构聚类的自监督学习疾病诊断方法. 计算机工程, 2024, 50 (7): 360- 371.
doi: 10.19678/j.issn.1000-3428.0068187
|
|
ZHANG Z K , YANG D , NIE T Z , et al. Self-supervised learning based on graph structural clustering for disease diagnosis method. Computer Engineering, 2024, 50 (7): 360- 371.
doi: 10.19678/j.issn.1000-3428.0068187
|
| 8 |
HONG S , ZHOU Z , ZIO E , et al. An adaptive method for health trend prediction of rotating bearings. Digital Signal Processing, 2014, 35, 117- 123.
|
| 9 |
MATHIOUDAKIS M, KOUDAS N. TwitterMonitor: trend detection over the twitter stream[C]//Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. New York, USA: ACM Press, 2010: 1155-1158.
|
| 10 |
JANNACH D , ZANKER M , FELFERNIG A , et al. Recommender systems: an introduction. New York, USA: Cambridge University Press, 2010: 1- 10.
|
| 11 |
李忠伟, 周洁, 刘昕, 等. 融合时间和知识信息的生成对抗网络序列推荐算法. 计算机工程, 2024, 50 (11): 70- 79.
doi: 10.19678/j.issn.1000-3428.0068300
|
|
LI Z W , ZHOU J , LIU X , et al. Sequence recommendation algorithm based on generative adversarial network integrating time and knowledge information. Computer Engineering, 2024, 50 (11): 70- 79.
doi: 10.19678/j.issn.1000-3428.0068300
|
| 12 |
李宇琦, 陈维政, 闫宏飞, 等. 基于网络表示学习的个性化商品推荐. 计算机学报, 2019, 42 (8): 1767- 1778.
|
|
LI Y Q , CHEN W Z , YAN H F , et al. Learning graph-based embedding for personalized product recommendation. Chinese Journal of Computers, 2019, 42 (8): 1767- 1778.
|
| 13 |
AGARWAL S, BRANSON K, BELONGIE S. Higher order learning with graphs[C]//Proceedings of the 23rd International Conference on Machine Learning. New York, USA: ACM Press, 2006: 17-24.
|
| 14 |
SUN L, JI S W, YE J P. Hypergraph spectral learning for multi-label classification[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2008: 668-676.
|
| 15 |
HUANG J, LIU X, SONG Y Q. Hyper-path-based representation learning for hyper-networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 449-458.
|
| 16 |
HUANG J , CHEN C , YE F H , et al. Hyper2vec: biased random walk for hyper-network embedding. Berlin, Germany: Springer, 2019.
|
| 17 |
GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 855-864.
|
| 18 |
NAJORK M, WIENER J L. Breadth-first crawling yields high-quality pages[C]//Proceedings of the 10th International Conference on World Wide Web. New York, USA: ACM Press, 2001: 114-118.
|
| 19 |
TU K, CUI P, WANG X, et al. Structural deep embedding for hyper-networks[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 426-433.
|
| 20 |
FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 3558-3565.
|
| 21 |
|
| 22 |
|
| 23 |
MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 3111-3119.
|
| 24 |
ZHENG V W, CAO B, ZHENG Y, et al. Collaborative filtering meets mobile recommendation: a user-centered approach[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2010: 236-241.
|
| 25 |
HARPER F M , KONSTAN J A . The MovieLens datasets. ACM Transactions on Interactive Intelligent Systems, 2016, 5 (4): 1- 19.
|
| 26 |
BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA: Curran Associates, Inc., 2013: 2787-2795.
|
| 27 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710.
|
| 28 |
|
| 29 |
MA X W, QIN G, QIU Z Y, et al. RiWalk: fast structural node embedding via role identification[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Presss, 2019: 478-487.
|
| 30 |
姜正申, 刘宏志, 付彬, 等. 集成学习的泛化误差和AUC分解理论及其在权重优化中的应用. 计算机学报, 2019, 42 (1): 1- 15.
|
|
JIANG Z S , LIU H Z , FU B , et al. Decomposition theories of generalization error and AUC in ensemble learning with application in weight optimization. Chinese Journal of Computers, 2019, 42 (1): 1- 15.
|