| 1 |
中国心血管疾病防治协会. 中国心血管健康与疾病报告[R]. 北京: 科学出版社, 2023: 8-9.
|
|
Chinese Association for the Prevention and Treatment of Cardiovascular Diseases. Report on cardiovascular health and diseases in China[R]. Beijing: Science Press, 2023: 8-9. (in Chinese)
|
| 2 |
THYGESEN K , ALPERT J S , JAFFE A S , et al. Fourth universal definition of myocardial infarction (2018). Journal of the American College of Cardiology, 2018, 72 (18): 2231- 2264.
doi: 10.1016/j.jacc.2018.08.1038
|
| 3 |
GARNER K K , POMEROY W , ARNOLD J J . Exercise stress testing: indications and common questions. American Family Physician, 2017, 96 (5): 293- 299.
|
| 4 |
曹春萍, 李哲. 基于ResNet101多特征融合的新型冠状病毒感染图像分类方法. 小型微型计算机系统, 2024, 45 (10): 2473- 2478.
|
|
CAO C P , LI Z . Novel method for classifying coronavirus infection images based on ResNet101 multi-feature fusion. Journal of Chinese Computer Systems, 2024, 45 (10): 2473- 2478.
|
| 5 |
|
| 6 |
|
| 7 |
VAN DEN WYNGAERT T , STROBEL K , KAMPEN W U , et al. The EANM practice guidelines for bone scintigraphy. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43 (9): 1723- 1738.
doi: 10.1007/s00259-016-3415-4
|
| 8 |
DUVALL W L , SLOMKA P J , GERLACH J R , et al. High-efficiency SPECT MPI: comparison of automated quantification, visual interpretation, and coronary angiography. Journal of Nuclear Cardiology, 2013, 20 (5): 763- 773.
doi: 10.1007/s12350-013-9735-x
|
| 9 |
ARSANJANI R , XU Y , DEY D , et al. Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm. Journal of Nuclear Medicine, 2013, 54 (4): 549- 555.
doi: 10.2967/jnumed.112.111542
|
| 10 |
SU T Y , CHEN J J , CHEN W S , et al. Deep learning for myocardial ischemia auxiliary diagnosis using CZT SPECT myocardial perfusion imaging. Journal of the Chinese Medical Association, 2023, 86 (1): 122- 130.
doi: 10.1097/JCMA.0000000000000833
|
| 11 |
KAPLAN BERKAYA S , AK SIVRIKOZ I , GUNAL S . Classification models for SPECT myocardial perfusion imaging. Computers in Biology and Medicine, 2020, 123, 103893.
doi: 10.1016/j.compbiomed.2020.103893
|
| 12 |
PAPANDRIANOS N , PAPAGEORGIOU E . Automatic diagnosis of coronary artery disease in SPECT myocardial perfusion imaging employing deep learning. Applied Sciences, 2021, 11 (14): 6362.
doi: 10.3390/app11146362
|
| 13 |
PAPANDRIANOS N , PAPAGEORGIOU E I , ANAGNOSTIS A . Development of convolutional neural networks to identify bone metastasis for prostate cancer patients in bone scintigraphy. Annals of Nuclear Medicine, 2020, 34 (11): 824- 832.
doi: 10.1007/s12149-020-01510-6
|
| 14 |
GWILLIAM M, TEUSCHER A, ANDERSON C, et al. Fair comparison: quantifying variance in results for fine-grained visual categorization[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D.C., USA: IEEE Press, 2021: 3309-3318.
|
| 15 |
ZENG R , HE J S . Grouping bilinear pooling for fine-grained image classification. Applied Sciences, 2022, 12 (10): 5063.
doi: 10.3390/app12105063
|
| 16 |
WU W, YU J. An improved bilinear pooling method for image-based action recognition[C]//Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Washington D.C., USA: IEEE Press, 2021: 8578-8583.
|
| 17 |
GUO J Y, HAN K, WU H, et al. CMT: convolutional neural networks meet vision transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 12165-12175.
|
| 18 |
HU X B , ZHU S N , PENG T L . Hierarchical attention vision transformer for fine-grained visual classification. Journal of Visual Communication and Image Representation, 2023, 91, 103755.
doi: 10.1016/j.jvcir.2023.103755
|
| 19 |
PAN Z Z , ZHUANG B H , HE H Y , et al. Less is more: pay less attention in vision transformers. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (2): 2035- 2043.
doi: 10.1609/aaai.v36i2.20099
|
| 20 |
ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 2921-2929.
|
| 21 |
YUSHKEVICH P A, GAO Y, GERIG G. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images[C]//Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Washington D.C., USA: IEEE Press, 2016: 3342-3345.
|
| 22 |
|
| 23 |
ROTH H R , YANG D , XU Z Y , et al. Going to extremes: weakly supervised medical image segmentation. Machine Learning and Knowledge Extraction, 2021, 3 (2): 507- 524.
doi: 10.3390/make3020026
|
| 24 |
GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 2414-2423.
|
| 25 |
YANG J C , SHI R , WEI D L , et al. MedMNIST v2-a large-scale lightweight benchmark for 2D and 3D biomedical image classification. Scientific Data, 2023, 10, 41.
doi: 10.1038/s41597-022-01721-8
|
| 26 |
|
| 27 |
XU X A , ZHOU F G , LIU B , et al. Efficient multiple organ localization in CT image using 3D region proposal network. IEEE Transactions on Medical Imaging, 2019, 38 (8): 1885- 1898.
doi: 10.1109/TMI.2019.2894854
|
| 28 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 4700-4708.
|
| 29 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6848-6856.
|
| 30 |
|
| 31 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50×fewer parameters and < 0.5 MB model size[EB/OL]. [2023-05-05]. https://arxiv.org/abs/1602.07360.
|
| 32 |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-05-05]. https://arxiv.org/abs/1704.04861.
|
| 33 |
JIN L , YANG J C , KUANG K M , et al. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of FracNet. eBioMedicine, 2020, 62, 103106.
doi: 10.1016/j.ebiom.2020.103106
|