| 1 |
HU K , JIN J L , ZHENG F , et al. Overview of behavior recognition based on deep learning. Artificial Intelligence Review, 2023, 56 (3): 1833- 1865.
doi: 10.1007/s10462-022-10210-8
|
| 2 |
LI Y , HUANG J , TIAN F , et al. Gesture interaction in virtual reality. Virtual Reality & Intelligent Hardware, 2019, 1 (1): 84- 112.
|
| 3 |
LIU W X , ZHONG X , ZHOU Z , et al. Dual-recommendation disentanglement network for view fuzz in action recognition. IEEE Transactions on Image Processing, 2023, 32, 2719- 2733.
doi: 10.1109/TIP.2023.3273459
|
| 4 |
SUN Z H , KE Q H , RAHMANI H , et al. Human action recognition from various data modalities: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45 (3): 3200- 3225.
|
| 5 |
于海港, 何宁, 刘圣杰, 等. 基于时空信息融合的人体行为识别研究. 计算机工程与应用, 2023, 59 (3): 202- 208.
|
|
YU H G , HE N , LIU S J , et al. Research on human behavior recognition based on temporal and spatial information fusion. Computer Engineering and Applications, 2023, 59 (3): 202- 208.
|
| 6 |
SHU X B , ZHANG L Y , QI G J , et al. Spatiotemporal co-attention recurrent neural networks for human-skeleton motion prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 3300- 3315.
doi: 10.1109/TPAMI.2021.3050918
|
| 7 |
牛为华, 翟瑞冰. 基于改进3D ResNet的视频人体行为识别方法研究. 计算机工程与科学, 2023, 45 (10): 1814- 1821.
|
|
NIU W H , ZHAI R B . A video human behavior recognition method based on improved 3D ResNet. Computer Engineering & Science, 2023, 45 (10): 1814- 1821.
|
| 8 |
|
| 9 |
YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1801.07455.
|
| 10 |
SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 12026-12035.
|
| 11 |
LIU Z Y, ZHANG H W, CHEN Z H, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 143-152.
|
| 12 |
ZHANG P F, LAN C L, ZENG W J, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 1112-1121.
|
| 13 |
刘锁兰, 王炎, 王洪元, 等. 基于多流语义图卷积网络的人体行为识别. 计算机工程, 2024, 50 (8): 64- 74.
doi: 10.19678/j.issn.1000-3428.0067977
|
|
LIU S L , WANG Y , WANG H Y , et al. Human behavior recognition based on multi-stream semantic graph convolutional network. Computer Engineering, 2024, 50 (8): 64- 74.
doi: 10.19678/j.issn.1000-3428.0067977
|
| 14 |
CHENG K, ZHANG Y F, HE X Y, et al. Skeleton-based action recognition with shift graph convolutional network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 183-192.
|
| 15 |
CHI H G, HA M H, CHI S, et al. InfoGCN: representation learning for human skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 20186-20196.
|
| 16 |
WANG K X , DENG H M . TFC-GCN: lightweight temporal feature cross-extraction graph convolutional network for skeleton-based action recognition. Sensors, 2023, 23 (12): 5593.
doi: 10.3390/s23125593
|
| 17 |
MOSTAFA A, PENG W, ZHAO G Y. Hyperbolic spatial temporal graph convolutional networks[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP). Washington D.C., USA: IEEE Press, 2022: 3301-3305.
|
| 18 |
VAITESSWAR U S, YEO C K. Multi-range mixed graph convolution network for skeleton-based action recognition[C]//Proceedings of the 5th Asia Pacific Information Technology Conference. Washington D.C., USA: IEEE Press, 2023: 49-54.
|
| 19 |
KIM T S, REITER A. Interpretable 3D human action analysis with temporal convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D.C., USA: IEEE Press, 2017: 1623-1631.
|
| 20 |
CHEN Z , LI S C , YANG B , et al. Multi-scale spatial temporal graph convolutional network for skeleton-based action recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (2): 1113- 1122.
doi: 10.1609/aaai.v35i2.16197
|
| 21 |
XING Y L , ZHU J , LI Y , et al. An improved spatial temporal graph convolutional network for robust skeleton-based action recognition. Applied Intelligence, 2023, 53 (4): 4592- 4608.
doi: 10.1007/s10489-022-03589-y
|
| 22 |
WU L Y , ZHANG C , ZOU Y X . Spatio temporal focus for skeleton-based action recognition. Pattern Recognition, 2023, 136, 109231.
doi: 10.1016/j.patcog.2022.109231
|
| 23 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
| 24 |
OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the ICASSP 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2023: 1-5.
|
| 25 |
DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Washington D.C., USA: IEEE Press, 2021: 3560-3569.
|
| 26 |
SHAHROUDY A, LIU J, NG T T, et al. NTU-RGB+D: a large scale dataset for 3D human activity analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 1010-1019.
|
| 27 |
LIU J , SHAHROUDY A , PEREZ M , et al. NTU-RGB+D 120:a large-scale benchmark for 3D human activity understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (10): 2684- 2701.
doi: 10.1109/TPAMI.2019.2916873
|
| 28 |
CHEN Y X, ZHANG Z Q, YUAN C F, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 13359-13368.
|
| 29 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 2818-2826.
|
| 30 |
|