1 |
CADENA C , CARLONE L , CARRILLO H , et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Transactions on Robotics, 2016, 32 (6): 1309- 1332.
doi: 10.1109/TRO.2016.2624754
|
2 |
KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the 6th IEEE ACM International Symposium on Mixed and Augmented Reality. New York, USA: ACM Press, 2007: 225-234.
|
3 |
MUR-ARTAL R , MONTIEL J M M , TARDOS J D . ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 2015, 31 (5): 1147- 1163.
doi: 10.1109/TRO.2015.2463671
|
4 |
MUR-ARTAL R , TARDOS J D . ORB-SLAM2:an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 2017, 33 (5): 1255- 1262.
doi: 10.1109/TRO.2017.2705103
|
5 |
CAMPOS C , ELVIRA R , RODRIGUEZ J J G , et al. ORB-SLAM3:an accurate open-source library for visual, visual-inertial, and multimap SLAM. IEEE Transactions on Robotics, 2021, 37 (6): 1874- 1890.
doi: 10.1109/TRO.2021.3075644
|
6 |
PUMAROLA A, VAKHITOV A, AGUDO A, et al. PL-SLAM: real-time monocular visual SLAM with points and lines[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2017: 4503-4508.
|
7 |
ENGEL J , SCHÖPS T , CREMERS D . LSD-SLAM: large-scale direct monocular SLAM. Berlin, Germany: Springer, 2014.
|
8 |
LI Y Y , BRASCH N , WANG Y D , et al. Structure-SLAM: low-drift monocular SLAM in indoor environments. IEEE Robotics and Automation Letters, 2020, 5 (4): 6583- 6590.
doi: 10.1109/LRA.2020.3015456
|
9 |
VAKHITOV A , FUNKE J , MORENO-NOGUER F . Accurate and linear time pose estimation from points and lines. Berlin, Germany: Springer, 2016.
|
10 |
DAI W C , ZHANG Y , LI P , et al. RGB-D SLAM in dynamic environments using point correlations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (1): 373- 389.
doi: 10.1109/TPAMI.2020.3010942
|
11 |
YANG S Q , FAN G H , BAI L L , et al. MGC-VSLAM: a meshing-based and geometric constraint VSLAM for dynamic indoor environments. IEEE Access, 2020, 8, 81007- 81021.
doi: 10.1109/ACCESS.2020.2990890
|
12 |
SONG S , LIM H , LEE A J , et al. DynaVINS: a visual-inertial SLAM for dynamic environments. IEEE Robotics and Automation Letters, 2022, 7 (4): 11523- 11530.
doi: 10.1109/LRA.2022.3203231
|
13 |
YANG X , YUAN Z K , ZHU D F , et al. Robust and efficient RGB-D SLAM in dynamic environments. IEEE Transactions on Multimedia, 2021, 23, 4208- 4219.
doi: 10.1109/TMM.2020.3038323
|
14 |
CHENG J Y , ZHANG H , MENG M Q H . Improving visual localization accuracy in dynamic environments based on dynamic region removal. IEEE Transactions on Automation Science and Engineering, 2020, 17 (3): 1585- 1596.
doi: 10.1109/TASE.2020.2964938
|
15 |
YU C, LIU Z X, LIU X J, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2018: 1168-1174.
|
16 |
BESCOS B , FACIL J M , CIVERA J , et al. DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. IEEE Robotics and Automation Letters, 2018, 3 (4): 4076- 4083.
doi: 10.1109/LRA.2018.2860039
|
17 |
HU X G, ZHANG Y Z, CAO Z Z, et al. CFP-SLAM: a real-time visual SLAM based on coarse-to-fine probability in dynamic environments[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2022: 4399-4406.
|
18 |
FAN Y C , ZHANG Q C , TANG Y L , et al. Blitz-SLAM: a semantic SLAM in dynamic environments. Pattern Recognition, 2022, 121, 108225.
doi: 10.1016/j.patcog.2021.108225
|
19 |
LIU J H , LI X F , LIU Y Q , et al. RGB-D inertial odometry for a resource-restricted robot in dynamic environments. IEEE Robotics and Automation Letters, 2022, 7 (4): 9573- 9580.
doi: 10.1109/LRA.2022.3191193
|
20 |
WU W X , GUO L , GAO H L , et al. YOLO-SLAM: a semantic SLAM system towards dynamic environment with geometric constraint. Neural Computing and Applications, 2022, 34 (8): 6011- 6026.
doi: 10.1007/s00521-021-06764-3
|
21 |
WANG Y N, XU K, TIAN Y B, et al. DRG-SLAM: a Semantic RGB-D SLAM using Geometric Features for Indoor Dynamic Scene[C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2022: 1352-1359.
|
22 |
LIU G H , ZENG W L , FENG B , et al. DMS-SLAM: a general visual SLAM system for dynamic scenes with multiple sensors. Sensors, 2019, 19 (17): 3714.
doi: 10.3390/s19173714
|
23 |
THEODOROU C , VELISAVLJEVIC V , DYO V . Visual SLAM for dynamic environments based on object detection and optical flow for dynamic object removal. Sensors, 2022, 22 (19): 7553.
doi: 10.3390/s22197553
|
24 |
ZHANG X G , ZHANG R D , WANG X K . Visual SLAM mapping based on YOLOv5 in dynamic scenes. Applied Sciences, 2022, 12 (22): 11548.
doi: 10.3390/app122211548
|
25 |
STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2012: 573-580.
|