[1] 张伟,郑柯,唐娉,等.深度卷积神经网络特征提取用于地表覆盖分类初探[J].中国图象图形学报, 2017, 22(8):1144-1153. ZHANG W, ZHENG K, TANG P, et al. Deep convolutional neural network feature extraction is used for preliminary exploration of land cover classification[J]. China Journal of Image and Graphics, 2017, 22(8):1144-1153.(in Chinese) [2] 徐天伦,李波,胡文杰,等.基于CA-EfficientDet的棉布瑕疵检测方法[J].中南民族大学学报(自然科学版), 2022, 41(2):243-250. XU T L, LI B, HU W J, et al. Cotton defect detection method based on CA-EfficientDet[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2022, 41(2):243-250.(in Chinese) [3] 庄集超,郭保苏,吴凤和.基于可变形密集卷积神经网络的布匹瑕疵检测[J].计量学报, 2023, 44(2):178-185. ZHUANG J C, GUO B S, WU F H. Fabric defect detection based on deformable dense convolutional neural network[J]. Acta Metrologica Sinica, 2023, 44(2):178-185.(in Chinese) [4] 赵楚,段先华,苏俊楷.改进Faster RCNN的瓷砖表面瑕疵检测研究[J].计算机工程与应用, 2023, 59(14):201-208. ZHAO C, DUAN X H, SU J K. Research on ceramic tile surface defect detection by improved faster RCNN[J]. Computer Engineering and Applications, 2023, 59(14):201-208.(in Chinese) [5] LI F, LI F, XI Q G. DefectNet:toward fast and effective defect detection[J]. IEEE Transactions on Instrumentation Measurement, 2021, 70:3067221. [6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2016:779-788. [7] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:7263-7271. [8] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2023-09-10] . https://arxiv.org/abs/1804.02767v1. [9] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2023-09-10] . https://arxiv.org/abs/2004.10934v1. [10] 陈益方,张上,冉秀康,等.基于改进YOLOv8的SAR图像飞机目标检测算法[J].电讯技术,2024,64(8):1206-1212. CHEN Y F, ZHANG S, RAN X K, et al. An aircraft target detection algorithm based on improved YOLOv8 in SAR Image[J]. Telecommunication Engineering,2024,64(8):1206-1212.(in Chinese) [11] LI C Y, LI L, JIANG H L, et al. YOLOv6:a single-stage object detection framework for industrial applications[EB/OL].[2023-09-10] . https://arxiv.org/abs/2209.02976. [12] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:7464-7475. [13] JOCHER G, CHAURASAI A, QIU J. Ultralytics YOLOv8(8.0.0)[EB/OL].[2023-09-10] . https://github.com/ultralytics/ultralytics. [14] WANG C Y, YEH I H, LIAO H M. YOLOv9:learning what you want to learn using programmable gradient information[EB/OL].[2023-09-10] . https://arxiv.org/abs/2402.13616v2. [15] 袁华清,刘桂华,王娅琼.基于改进YOLOv3-tiny的织物表面小目标瑕疵检测[J].制造业自动化, 2022, 44(12):172-176. YUAN H Q, LIU G H, WANG Y Q. Defect detection of small targets on fabric surface based on improved YOLOv3-tiny[J]. Manufacturing Automation, 2022, 44(12):172-176.(in Chinese) [16] 郭峰,朱启兵,黄敏,等.基于改进YOLOV4的陶瓷基板瑕疵检测[J].光学精密工程, 2022, 30(13):1631. GUO F, ZHU Q B, HUANG M, et al. Defect detection in ceramic substrate based on improved YOLOV4[J]. Optics and Precision Engineering, 2022, 30(13):1631.(in Chinese) [17] 刘俊豪,王美林,谢兴,等.基于改进YOLOv5的皮革瑕疵检测算法[J].计算机工程, 2023, 49(8):240-249. LIU J H, WANG M L, XIE X, et al. Leather defect detection algorithm based on improved YOLOv5[J]. Computer Engineering, 2023, 49(8):240-249.(in Chinese) [18] LI B Y, LIU Y, WANG X G, et al. Gradient harmonized single-stage detector[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. New York, USA:ACM Press, 2019:8577-8584. [19] WANG X, GAO H, JIA Z, et al. BL-YOLOv8:an improved road defect detection model based on YOLOv8[J]. Sensors, 2023, 23(20):8361. [20] WAN Q, HUANG Z L, LU J C, et al. SeaFormer++:squeeze-enhanced axial transformer for mobile visual recognition[EB/OL].[2023-09-10] . https://arxiv.org/abs/2301.13156v5. [21] CHEN J R, KAO S H, HE H, et al. Run, don't walk:chasing higher FLOPS for faster neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:12021-12031. [22] TANG Y, HAN K, GUO J, et al. GhostNetv2:enhance cheap operation with long-range attention[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA:MIT Press, 2022:9969-9982. [23] ZHU C C, HE Y H, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2019:840-849. [24] TIAN Z, SHEN C H, CHEN H, et al. FCOS:fully convolutional one-stage object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2019:9627-9636. [25] KONG T, SUN F C, LIU H P, et al. FoveaBox:beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29:7389-7398. [26] LIU W, LIAO S C, REN W Q, et al. High-level semantic feature detection:a new perspective for pedestrian detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2019:5187-5196. [27] WANG J Q, CHEN K, YANG S, et al. Region proposal by guided anchoring[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2019:2965-2974. [28] HAN K, WANG Y H, TIAN Q, et al. GhostNet:more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2020:1580-1589. [29] ZHANG J, BAN M. PKU-market-phone[EB/OL].[2023-09-10] . https://github.com/jianzhang96/MSD. [30] GHIASI G, CUI Y, SRINIVAS A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2021:2918-2928. [31] JIANG Y Q, TAN Z Y, WANG J Y, et al. GiraffeDet:a heavy-neck paradigm for object detection[EB/OL].[2023-09-10] . https://arxiv.org/abs/2202.04256v2. [32] HAN K, WANG Y H, XU C, et al. GhostNets on heterogeneous devices via cheap operations[J]. International Journal of Computer Vision, 2022, 130(4):1050-1069. [33] CHEN C P, GUO Z C, ZENG H E, et al. RepGhost:a hardware-efficient ghost module via re-parameterization[EB/OL].[2023-09-10] . https://arxiv.org/abs/2211.06088v2. [34] LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism:retain information to enhance channel-spatial interactions[EB/OL].[2023-09-10] . https://arxiv.org/abs/2112.05561v1. [35] YANG L, ZHANG R Y, LI L, et al. Simam:a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA:IEEE Press, 2021:11863-11874. [36] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[C]//Proceedings of International Conference on Computer Vision. Berlin, Germany:Springer, 2018:3-19. [37] LI Y X, HOU Q B, ZHENG Z H, et al. Large selective kernel network for remote sensing object detection[EB/OL].[2023-09-10] . https://arxiv.org/abs/2303.09030v2. [38] LIU Y C, SHAO Z R, TENG Y Y, et al. NAM:normalization-based attention module[EB/OL].[2023-09-10] . https://arxiv.org/abs/2111.12419v1. [39] YU Y, ZHANG Y, CHENG Z, et al. MCA:multidimensional collaborative attention in deep convolutional neural networks for image recognition[EB/OL].[2023-09-10] . https://github.com/ndsclark/MCANet. [40] CAI Z W, VASCONCELOS N. Cascade R-CNN:delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:6154-6162. [41] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [42] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin, Germany:Springer, 2016:21-37. [43] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[EB/OL].[2023-09-10] .https://arxiv.org/abs/2304.08069v3. [44] 倪富陶,李倩,聂云靖,等.基于改进YOLOv8的轻量化钢筋端面检测算法研究[J].太原理工大学学报, 2024, 55(4):696-704. NI F T, LI Q, NIE Y J, et al. Lightweight rebar end detection algorithm based on improved YOLOv8[J]. Taiyuan University of Technology, 2024, 55(4):696-704.(in Chinese) [45] 刘子洋,徐慧英,朱信忠,等. Bi-YOLO:一种基于YOLOv8改进的轻量化目标检测算法[J].计算机工程与科学, 2024, 46(8):1444-1454. LIU Z Y, XU H Y, ZHU Z X, et al. Bi-YOLO:an improved lightweight object detection algorithm based on YOLOv8n[J]. Computer Engineering and Science, 2024, 46(8):1444-1454.(in Chinese) [46] WANG C C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[EB/OL].[2023-09-10] . https://arxiv.org/abs/2309.11331. [47] DING R W, DAI L H, LI G P, et al. TDD-Net:a tiny defect detection network for printed circuit boards[J]. CAAI Transactions on Intelligence Technology, 2019, 4(2):110-116. [48] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2017:618-626. |