1 |
李振鲁, 黄威, 孙锴. 复杂环境下的轻量化道路目标识别算法研究. 计算机工程, 2024, 50 (4): 219- 227.
doi: 10.19678/j.issn.1000-3428.0067576
|
|
LI Z L , HUANG W , SUN K . Research on lightweight road-target-recognition algorithm in complex environment. Computer Engineering, 2024, 50 (4): 219- 227.
doi: 10.19678/j.issn.1000-3428.0067576
|
2 |
周金涛, 高迪驹, 刘志全. 基于全景视觉的无人船水面障碍物检测方法. 计算机工程, 2024, 50 (2): 113- 121.
doi: 10.19678/j.issn.1000-3428.0067238
|
|
ZHOU J T , GAO D J , LIU Z Q . Detection method of water-surface obstacles for unmanned ships based on panoramic vision. Computer Engineering, 2024, 50 (2): 113- 121.
doi: 10.19678/j.issn.1000-3428.0067238
|
3 |
蒋心璐, 陈天恩, 王聪, 等. 大田环境下的农业害虫图像小目标检测算法. 计算机工程, 2024, 50 (1): 232- 241.
doi: 10.19678/j.issn.1000-3428.0067030
|
|
JIANG X L , CHEN T E , WANG C , et al. Small object detection algorithm for agricultural pest images in field environments. Computer Engineering, 2024, 50 (1): 232- 241.
doi: 10.19678/j.issn.1000-3428.0067030
|
4 |
管嘉程, 任红卫, 周宋佳. 基于YOLOv5改进的轻量化目标检测. 计算机系统应用, 2023, 32 (9): 132- 142.
|
|
GUAN J C , REN H W , ZHOU S J . Lightweight object detection based on YOLOv5 improvement. Computer System Applications, 2023, 32 (9): 132- 142.
|
5 |
沙苗苗, 李宇, 李安. 改进Faster R-CNN的遥感图像多尺度飞机目标检测. 遥感学报, 2022, 26 (8): 1624- 1635.
|
|
SHA M M , LI Y , LI A . Improving Faster R-CNN for multi-scale aircraft target detection in remote sensing images. Journal of Remote Sensing, 2022, 26 (8): 1624- 1635.
|
6 |
曲海成, 王蒙, 柴蕊. 双向多尺度特征融合的高效遥感图像车辆检测. 计算机工程与应用, 2024, 60 (12): 346- 356.
|
|
QU H C , WANG M , CHAI R . Efficient vehicle detection in remote sensing images with bidirectional multi-scale feature fusion. Computer Engineering and Applications, 2024, 60 (12): 346- 356.
|
7 |
戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测. 计算机工程, 2023, 49 (1): 41- 48.
doi: 10.19678/j.issn.1000-3428.0065942
|
|
QI L L , GAO J L . Small object detection based on improved YOLOv7. Computer Engineering, 2023, 49 (1): 41- 48.
doi: 10.19678/j.issn.1000-3428.0065942
|
8 |
梁嘉杰, 李星星. 特定任务上下文解耦的遥感图像目标检测方法. 计算机工程与应用, 2025, 61 (2): 293- 303.
|
|
LIANG J J , LI X X . Task-specific context decoupling object detection method for remote images. Computer Engineering and Applications, 2025, 61 (2): 293- 303.
|
9 |
王龙博, 刘建辉, 张贝贝, 等. 利用注意力机制融合的YOLOv5遥感图像目标检测. 信息工程大学学报, 2023, 24 (4): 438- 446.
|
|
WANG L B , LIU J H , ZHANG B B , et al. Object detection in YOLOv5 remote sensing image using attention mechanism fusion. Journal of University of Information Engineering, 2023, 24 (4): 438- 446.
|
10 |
左露, 牛晓伟, 朱春惠, 等. 基于改进ConvNeXt的遥感图像目标检测算法. 电光与控制, 2024, 31 (2): 46-51, 91.
|
|
ZUO L , NIU X W , ZHU C H , et al. Remote sensing image object detection algorithm based on improved ConvNeXt. Electronics Optics and Control, 2024, 31 (2): 46-51, 91.
|
11 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
12 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
13 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 770-778.
|
14 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 936-944.
|
15 |
LIU Z. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2021: 9992-10002.
|
16 |
PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 821-830.
|
17 |
ZHANG H K, CHANG H, MA B P, et al. Dynamic R-CNN: towards high quality object detection via dynamic training[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 260-275.
|
18 |
LONG L , GONG Y P , XIAO Z F , et al. Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (5): 2486- 2498.
|
19 |
XIAO Z F , LIU W , TANG G F , et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images. International Journal of Remote Sensing, 2015, 36 (2): 618- 644.
|
20 |
HOSANG J , BENENSON R , DOLLÁR P , et al. What makes for effective detection proposals?. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (4): 814- 830.
|
21 |
ZHANG S F, C CHI, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 9756-9765.
|
22 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6154-6162.
|
23 |
|
24 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2019: 9626-9635.
|
25 |
|
26 |
ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 8510-8519.
|
27 |
CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 13034-13043.
|
28 |
|
29 |
ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[EB/OL]. [2023-10-10]. https://arxiv.org/pdf/2203.03605.
|
30 |
|