作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 280-293. doi: 10.19678/j.issn.1000-3428.0069353

• 图形图像处理 • 上一篇    下一篇

基于改进YOLOv8n的航拍轻量化小目标检测算法: PECS-YOLO

王舒梦1, 徐慧英1,*(), 朱信忠1, 黄晓2, 宋杰1, 李毅1   

  1. 1. 浙江师范大学计算机科学与技术学院, 浙江 金华 321004
    2. 浙江师范大学教育学院, 浙江 金华 321004
  • 收稿日期:2024-02-04 修回日期:2024-04-08 出版日期:2025-09-15 发布日期:2024-06-20
  • 通讯作者: 徐慧英
  • 基金资助:
    国家自然科学基金(61976196); 浙江省自然科学基金重点项目(LZ22F030003); 国家级大学生创新训练计划重点项目(202310345042)

Lightweight Small Object Detection Algorithm for Aerial Photography Based on Improved YOLOv8n: PECS-YOLO

WANG Shumeng1, XU Huiying1,*(), ZHU Xinzhong1, HUANG Xiao2, SONG Jie1, LI Yi1   

  1. 1. College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    2. School of Education, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
  • Received:2024-02-04 Revised:2024-04-08 Online:2025-09-15 Published:2024-06-20
  • Contact: XU Huiying

摘要:

在无人机(UAV)航拍中, 目标通常是密集分布、特征不明显的小目标, 且物体尺度变化较大。因此, 目标检测容易出现漏检和误检的问题。为了解决这些问题, 提出了一种基于改进YOLOv8n的航拍轻量化小目标检测算法: PECS-YOLO。该算法通过在Neck部分增加P2小目标检测层, 将浅层和深层的特征图进行拼接, 以更好地捕捉小目标的细节信息; 将轻量化卷积PartialConv引入全新的结构CSPPC(Cross Stage Partial PartialConv), 替换Neck网络中的C2f(Concatenation with Fusion), 实现模型轻量化; 引入SPPELAN(Spatial Pyramid Pooling with Efficient Layer Aggregation Network), 以有效地捕捉小目标特征; 通过在Neck部分每个检测头前加入压缩和激励(SE)注意力机制, 使网络更好地关注有用的通道, 减少复杂环境中背景噪声对小目标检测任务的干扰; 最后使用EfficiCIoU作为边界框损失函数, 将边界框的形状差异也考虑在内, 以增强模型对小目标的检测能力。实验结果表明: 相比YOLOv8n, PECS-YOLO目标检测算法在VisDrone2019-DET数据集上交并比为0.5的平均精度(mAP@0.5)提高了3.5%, 交并比为0.5∶0.95的平均精度(mAP@0.5∶0.95)提高了3.7%, 模型参数量减少了约25.7%, 检测速度提高了约65.2%。综上所述, PECS-YOLO模型适合于UAV航拍下的小目标检测任务。

关键词: 小目标检测, YOLOv8n, 无人机检测, SPPELAN, 轻量化

Abstract:

In Unmanned Aerial Vehicle (UAV) aerial photography, targets are usually small targets with dense distribution and unobvious features, and the object scale varies greatly. Therefore, the problems of missing detection and false detection are easy to occur in object detection. In order to solve these problems, a lightweight small object detection algorithm based on improved YOLOv8n, namely PECS-YOLO, is proposed for aerial photography. By adding P2 small object detection layer in the Neck part, the algorithm combines shallow and deep feature maps to better capture details of small targets. A lightweight convolution, namely PartialConv, is introduced to a new structure of Cross Stage Partial PartialConv (CSPPC), to replace Concatenation with Fusion (C2f) in the Neck network to realized lightweight of the model. By using a model of Spatial Pyramid Pooling with Efficient Layer Aggregation Network (SPPELAN), small object features can be captured effectively. By adding Squeeze-and-Excitation (SE)attention mechanism in front of each detection head in the Neck part, the network can better focus on useful channels and reduce the interference of background noise on small object detection tasks in complex environments. Finally, EfficiCIoU is used as the boundary frame loss function, and the shape difference of the boundary frame is also taken into account, which enhances the detection ability of the model for small targets. Experimental results show that, compared YOLOv8n, the mean Average Precision at Intersection over Union (IoU) of 0.5 (mAP@0.5) and the mean Average Precision at IoU of 0.5∶0.95 (mAP@0.5∶0.95) of PECS-YOLO object detection algorithm on VisDrone2019-DET dataset are increased by 3.5% and 3.7% respectively, the number of parameters is reduced by about 25.7%, and detection speed is increased by about 65.2%. In summary, PECS-YOLO model is suitable for small object detection in UAV aerial photography.

Key words: small object detection, YOLOv8n, Unmanned Aerial Vehicle (UAV) detection, SPPELAN, lightweight