| 1 |
TIAN Q , ZHU Y N , SUN H Y , et al. Unsupervised domain adaptation through dynamically aligning both the feature and label spaces. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (12): 8562- 8573.
doi: 10.1109/TCSVT.2022.3192135
|
| 2 |
TIAN Q , SUN H Y , MA C , et al. Heterogeneous domain adaptation with structure and classification space alignment. IEEE Transactions on Cybernetics, 2022, 52 (10): 10328- 10338.
doi: 10.1109/TCYB.2021.3070545
|
| 3 |
TZENG E, HOFFMAN J, DARRELL T, et al. Simultaneous deep transfer across domains and tasks[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE Press, 2015: 4068-4076.
|
| 4 |
KONIUSZ P, TAS Y, PORIKLI F. Domain adaptation by mixture of alignments of second- or higher-order scatter tensors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE Press, 2017: 7139-7148.
|
| 5 |
TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE Press, 2017: 2962-2971.
|
| 6 |
SHEN J, QU Y R, ZHANG W N, et al. Wasserstein distance guided representation learning for domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI, 2018: 4058-4069.
|
| 7 |
GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//Proceedings of International Conference on Machine Learning. [S. l.]: PMLR, 2015: 1180-1189.
|
| 8 |
SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE Press, 2018: 3723-3732.
|
| 9 |
LIU H, CAO Z J, LONG M S, et al. Separate to adapt: open set domain adaptation via progressive separation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE Press, 2019: 2922-2931.
|
| 10 |
|
| 11 |
LI G R, KANG G L, ZHU Y, et al. Domain consensus clustering for universal domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE Press, 2021: 9752-9761.
|
| 12 |
ZHENG X, HUANG Y, TANG J. Reliable cluster-based framework for open set domain adaptation[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Rhodes Island, Greece: IEEE Press, 2023: 1-5.
|
| 13 |
FU B, CAO Z J, LONG M S, et al. Learning to detect open classes for universal domain adaptation[C]//Proceedings of ECCV 2020. Berlin, Germany: Springer, 2020: 567-583.
|
| 14 |
SAITO K, SAENKO K. OVANet: one-vs-all network for universal domain adaptation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE Press, 2021: 8980-8989.
|
| 15 |
CHANG W L, WANG H P, PENG W H, et al. All about structure: adapting structural information across domains for boosting semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE Press, 2019: 1900-1909.
|
| 16 |
GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, USA: IEEE Press, 2012: 2066-2073.
|
| 17 |
|
| 18 |
YAO T, PAN Y W, NGO C W, et al. Semi-supervised domain adaptation with subspace learning for visual recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE Press, 2015: 2142-2150.
|
| 19 |
QI F, YANG X S, XU C S. A unified framework for multimodal domain adaptation[C]//Proceedings of the 26th ACM International Conference on Multimedia. New York, USA: ACM, 2018: 429-437.
|
| 20 |
LONG M , ZHU H , WANG J , et al. Unsupervised domain adaptation with residual transfer networks. Advances in Neural Information Processing Systems, 2016, 29, 136- 144.
|
| 21 |
|
| 22 |
|
| 23 |
DHAINI M , BERAR M , HONEINE P , et al. Unsupervised domain adaptation for regression using dictionary learning. Knowledge-Based Systems, 2023, 267, 110439.
doi: 10.1016/j.knosys.2023.110439
|
| 24 |
BUSTO P P, GALL J. Open set domain adaptation[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE Press, 2017: 754-763.
|
| 25 |
SAITO K, YAMAMOTO S, USHIKU Y, et al. Open set domain adaptation by backpropagation[C]//Proceedings of ECCV 2018. Berlin, Germany: Springer, 2018: 156-171.
|
| 26 |
BUCCI S, LOGHMANI M R, TOMMASI T. On the effectiveness of image rotation for open set domain adaptation[C]//Proceedings of ECCV 2020. Berlin, Germany: Springer, 2020: 422-438.
|
| 27 |
FENG Q Y, KANG G L, FAN H H, et al. Attract or distract: exploit the margin of open set[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE Press, 2019: 7989-7998.
|
| 28 |
LI J , YANG L , WANG Q L , et al. WDAN: a weighted discriminative adversarial network with dual classifiers for fine-grained open-set domain adaptation. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (9): 5133- 5147.
doi: 10.1109/TCSVT.2023.3249200
|
| 29 |
GRANDVALET Y , BENGIO Y . Semi-supervised learning by entropy minimization. Advances in Neural Information Processing Systems, 2004, 17, 529- 536.
|
| 30 |
SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains[C]//Proceedings of ECCV 2010. Berlin, Germany: Springer, 2010: 213-226.
|
| 31 |
VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE Press, 2017: 5385-5394.
|
| 32 |
PENG X C, USMAN B, KAUSHIK N, et al. VisDA: a synthetic-to-real benchmark for visual domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE Press, 2018: 2021-2026.
|
| 33 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of ECCV 2014. Berlin, Germany: Springer, 2014: 740-755.
|
| 34 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE Press, 2009: 248-255.
|
| 35 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE Press, 2016: 770-778.
|
| 36 |
|
| 37 |
|
| 38 |
GANIN Y , USTINOVA E , AJAKAN H , et al. Domain-adversarial training of neural networks. Journal of Machine Learning Research, 2016, 17 (59): 1- 35.
|
| 39 |
WANG Q, MENG F, BRECKON T. Progressively select and reject pseudo-labelled samples for open-set domain adaptation[EB/OL]. [2024-01-02]. https://arxiv.org/pdf/2110.12635.
|
| 40 |
SAITO K , KIM D , SCLAROFF S , et al. Universal domain adaptation through self supervision. Advances in Neural Information Processing Systems, 2020, 33, 16282- 16292.
|
| 41 |
JANG J H , NA B , SHIN D H , et al. Unknown-aware domain adversarial learning for open-set domain adaptation. Advances in Neural Information Processing Systems, 2022, 35, 16755- 16767.
|
| 42 |
LI W Y, LIU J, HAN B, et al. Adjustment and alignment for unbiased open set domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE Press, 2023: 24110-24119.
|
| 43 |
LIU Z F , CHEN G , LI Z J , et al. PSDC: a prototype-based shared-dummy classifier model for open-set domain adaptation. IEEE Transactions on Cybernetics, 2023, 53 (11): 7353- 7366.
doi: 10.1109/TCYB.2022.3228301
|
| 44 |
LUO Y, WANG Z, HUANG Z, et al. Progressive graph learning for open-set domain adaptation[C]//Proceedings of International Conference on Machine Learning. [S. l.]: PMLR, 2020: 6468-6478.
|
| 45 |
XU Y , CHEN L , DUAN L , et al. Open set domain adaptation with soft unknown-class rejection. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (3): 1601- 1612.
doi: 10.1109/TNNLS.2021.3105614
|
| 46 |
CHANG D L , SAIN A , MA Z Y , et al. Mind the gap: open set domain adaptation via mutual-to-separate framework. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (6): 4159- 4174.
doi: 10.1109/TCSVT.2023.3326862
|
| 47 |
MAATEN L , HINTON G . Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9 (11): 2579- 2605.
|