作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2026, Vol. 52 ›› Issue (1): 116-125. doi: 10.19678/j.issn.1000-3428.0069878

• 计算智能与模式识别 • 上一篇    下一篇

基于过渡桥接机制的对抗性开放集领域自适应

田青1,2,3,*(), 郁江森1, 刘祥1, 李燕芝1, 申珺妤1   

  1. 1. 南京信息工程大学软件学院, 江苏 南京 210044
    2. 南京信息工程大学无锡研究院, 江苏 无锡 214000
    3. 南京航空航天大学模式分析与机器智能工业和信息化部重点实验室, 江苏 南京 211106
  • 收稿日期:2024-05-21 修回日期:2024-07-13 出版日期:2026-01-15 发布日期:2024-09-27
  • 通讯作者: 田青
  • 作者简介:

    田青(CCF高级会员), 男, 教授、博士、博士生导师, 主研方向为机器学习、模式识别、计算机视觉

    郁江森, 硕士研究生

    刘祥, 硕士研究生

    李燕芝, 硕士研究生

    申珺妤, 硕士研究生

  • 基金资助:
    国家自然科学基金(62176128); 江苏省自然科学基金(BK20231143); 中央高校基本科研业务费专项资金(NJ2023032); 江苏省"青蓝工程"人才计划项目

Adversarial Open-Set Domain Adaptation via Transition Bridge Mechanism

TIAN Qing1,2,3,*(), YU Jiangsen1, LIU Xiang1, LI Yanzhi1, SHEN Junyu1   

  1. 1. School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    2. Wuxi Research Institute, Nanjing University of Information Science and Technology, Wuxi 214000, Jiangsu, China
    3. MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China
  • Received:2024-05-21 Revised:2024-07-13 Online:2026-01-15 Published:2024-09-27
  • Contact: TIAN Qing

摘要:

无监督领域自适应(UDA)的目的是将知识从带有标记样本的源域转移到没有标记样本的目标域, 其假设源域和目标域具有相同的类别, 但这一假设在现实世界场景下往往难以成立。目标域通常包含着源域未被发现的新类别样本, 这种设置称为开放集领域自适应(OSDA)。在OSDA中, 丰富的域特定特征使得学习域不变表示面临着巨大挑战。现有的OSDA方法往往忽略了域特定特征, 并将域差异直接进行最小化, 这可能导致类别之间的边界不清晰并削弱模型的泛化能力。为了解决这一问题, 提出一种基于过渡桥接机制的OSDA方法(OSTBM)。在特征提取器和域鉴别器上建立过渡桥接机制, 以减少域特定特征在整体传递过程中的干扰, 并提高域鉴别器的鉴别能力, 从而在特征对齐过程中更好地对源分布与目标已知分布进行对齐, 并将目标未知分布推离决策边界。实验结果表明, 所提方法在多个基准数据集上表现优于现有的OSDA方法, 展现了优越的性能。

关键词: 领域自适应, 迁移学习, 开放集识别, 过渡桥接机制, 对抗学习

Abstract:

Unsupervised Domain Adaptation (UDA) aims to transfer knowledge from a source domain with labeled samples to a target domain without labeled samples. UDA assumes that the source and target domains have the same categories, which is often challenging to achieve in real-world scenarios. The target domain usually contains new categories of samples that are not found in the source domain, this setup is called Open-Set Domain Adaptation (OSDA). In OSDA, the abundance of domain-specific features makes learning domain-invariant representations a significant challenge. Existing OSDA methods tend to ignore domain-specific features and directly minimize domain differences, which may lead to unclear boundaries between categories and weaken the generalization ability of the model. To address this problem, the OSDA method based on a Transition Bridge Mechanism (OSTBM) is proposed. Specifically, the OSTBM adds a transition bridging mechanism to the feature extractor and domain discriminator to reduce the interference of domain-specific features in the overall transfer process and improves the discriminative ability of the domain discriminator. This enables better alignment of the source distribution with the known target distribution in the feature alignment process and pushes the unknown target distribution away from the decision boundary. The experimental results show that the proposed method outperforms existing OSDA methods on multiple benchmark datasets, demonstrating its superior performance.

Key words: domain adaptation, transfer learning, open-set recognition, transition bridge mechanism, adversarial learning