作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2026, Vol. 52 ›› Issue (2): 46-68. doi: 10.19678/j.issn.1000-3428.0069826

• 前沿观点与综述 • 上一篇    

计算机视觉对抗攻击研究综述

秦颖鑫, 张可佳, 潘海为, 巨亚昊   

  1. 哈尔滨工程大学计算机科学与技术学院, 黑龙江 哈尔滨 150001
  • 收稿日期:2024-05-09 修回日期:2024-08-30 发布日期:2024-10-29
  • 作者简介:秦颖鑫,女,博士研究生,主研方向为深度学习、对抗学习;张可佳,副教授、博士;潘海为,教授、博士;巨亚昊(通信作者),本科生。E-mail:juyahao@hrbeu.edu.cn
  • 基金资助:
    国家自然科学基金(62072135);国家工业和信息化部船舶CAE研发应用项目(CBZ3N21-2);哈尔滨工程大学创新型人才培养国际交流项目。

Adversarial Attacks in Computer Vision: A Survey

QIN Yingxin, ZHANG Kejia, PAN Haiwei, JU Yahao   

  1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • Received:2024-05-09 Revised:2024-08-30 Published:2024-10-29

摘要: 深度学习引领人工智能蓬勃发展,被广泛用于计算机视觉,在图像识别、目标检测、目标跟踪、人脸识别等复杂任务上取得了突破性进展和显著的成果,展现出其卓越的识别和预测能力。但深度学习模型的脆弱性和漏洞也逐渐暴露,以卷积神经网络为代表的深度学习技术对精心设计的对抗样本极为敏感,容易对模型的安全性和隐私性造成影响。首先,总结对抗攻击的概念、对抗样本产生的原因以及相关术语,概述数字域和物理域中几类经典的对抗攻击策略,对其优缺点进行分析;其次,专注计算机视觉,从数字域和物理域两个方面分别总结目标检测、人脸识别、目标跟踪、单目深度估计、光流估计中对抗攻击的最新研究进展以及常用于研究的各种数据集,简单介绍现阶段对抗样本的防御和检测方法,归纳对抗样本防御和检测方法的优缺点,阐述不同视觉任务对抗样本防御的应用实例;最后,基于对抗攻击方法的总结,探索并分析现有计算机视觉对抗攻击的不足和挑战。

关键词: 深度学习, 计算机视觉, 对抗攻击, 数字域, 物理域, 对抗样本

Abstract: Deep learning has driven the development of artificial intelligence, which is widely used in computer vision. It provides breakthroughs and remarkable results in complex tasks such as image recognition, object detection, object tracking, and face recognition, demonstrating its excellent recognition and prediction capabilities. However, vulnerabilities and loopholes in deep learning models have been gradually exposed. Deep learning techniques, represented by convolutional neural networks, are extremely sensitive to well-designed adversarial examples, which can easily affect the security and privacy of the models. This paper first summarizes the concept of adversarial attacks, reasons for generating adversarial examples, and related terms. It outlines several types of classical adversarial attack strategies in the digital and physical domains and analyzes their advantages and disadvantages. Second, it focuses on computer vision and summarizes the latest research in adversarial attacks during tasks such as object detection, face recognition, object tracking, monocular depth estimation, and optical flow estimation, from both the digital and physical domains, as well as the various datasets commonly used in the study. It also briefly introduces the current stage of adversarial example defense and detection methods, summarizes the advantages and disadvantages of these methods, and describes examples of the applications of adversarial sample defense for various visual tasks. Finally, based on the summary of adversarial attack methods, it explores and analyzes the deficiencies and challenges of existing computer vision adversarial attacks.

Key words: deep learning, computer vision, adversarial attacks, digital domain, physical domain, adversarial examples

中图分类号: