| 1 |
闫红丹, 杨怀洲. Web服务QoS预测与主动推荐方法综述. 智能计算机与应用, 2019, 9(1): 199- 202.
|
|
YAN H D, YANG H Z. QoS prediction and active recommendation for Web services overview. Intelligent Computer and Applications, 2019, 9(1): 199- 202.
|
| 2 |
ZHENG Z B, MA H, LV M R, et al. WSRec: a collaborative filtering based Web service recommender system[C]//Proceedings of the IEEE International Conference on Web Services. Washington D.C., USA: IEEE Press, 2009: 437-444.
|
| 3 |
SHI L L, LIU L, JIANG L, et al. QoS prediction for smart service management and recommendation based on the location of mobile users. Neurocomputing, 2022, 471, 12- 20.
doi: 10.1016/j.neucom.2021.02.107
|
| 4 |
TANG W Y, TANG M D, LIANG W. Collaborative QoS prediction via context-aware factorization machine[C]//Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing. Berlin, Germany: Springer International Publishing, 2022: 182-195.
|
| 5 |
XIE F, WANG J, XIONG R B, et al. An integrated service recommendation approach for service-based system development. Expert Systems with Applications, 2019, 123, 178- 194.
doi: 10.1016/j.eswa.2019.01.025
|
| 6 |
LIU H, ZHENG C, LI D, et al. EDMF: efficient deep matrix factorization with review feature learning for industrial recommender system. IEEE Transactions on Industrial Informatics, 2021, 18(7): 4361- 4371.
|
| 7 |
LIU H, ZHENG C, LI D, et al. Multi-perspective social recommendation method with graph representation learning. Neurocomputing, 2022, 468, 469- 481.
doi: 10.1016/j.neucom.2021.10.050
|
| 8 |
LI D, LIU H, ZHANG Z L, et al. CARM: confidence-aware recommender model via review representation learning and historical rating behavior in the online platforms. Neurocomputing, 2021, 455, 283- 296.
doi: 10.1016/j.neucom.2021.03.122
|
| 9 |
LIU H, ZHANG C, DENG Y J, et al. TransIFC: invariant cues-aware feature concentration learning for efficient fine-grained bird image classification. IEEE Transactions on Multimedia, 2023, 27, 1677- 1690.
|
| 10 |
XUE Z C, ZHANG Z L, LIU H, et al. MHRN: a multi-perspective hierarchical relation network for knowledge graph embedding. Knowledge-Based Systems, 2025, 313, 113040.
doi: 10.1016/j.knosys.2025.113040
|
| 11 |
LIU H, ZHOU Q Y, ZHANG C, et al. MMATrans: muscle movement aware representation learning for facial expression recognition via Transformers. IEEE Transactions on Industrial Informatics, 2024, 20(12): 13753- 13764.
doi: 10.1109/TII.2024.3431640
|
| 12 |
ZHENG Z B, ZHANG Y L, LV M R. Investigating QoS of real-world Web services. IEEE Transactions on Services Computing, 2014, 7(1): 32- 39.
doi: 10.1109/TSC.2012.34
|
| 13 |
AL-MASRI E, MAHMOUD Q H. QoS-based discovery and ranking of Web services[C]//Proceedings of the 16th International Conference on Computer Communications and Networks. Washington D.C., USA: IEEE Press, 2007: 529-534.
|
| 14 |
LIU M Y, TU Z Y, ZHU Y Q, et al. Data correction and evolution analysis of the Programmable Web service ecosystem. Journal of Systems and Software, 2021, 182, 111066.
doi: 10.1016/j.jss.2021.111066
|
| 15 |
NI J M, LI J C, MCAULEY J. Justifying recommendations using distantly-labeled reviews and fine-grained aspects[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, USA: ACL Press, 2019: 188-197.
|
| 16 |
YANG D Q, ZHANG D Q, ZHENG V W, et al. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(1): 129- 142.
doi: 10.1109/TSMC.2014.2327053
|
| 17 |
YIN Y Y, CHEN L, XU Y S, et al. Location-aware service recommendation with enhanced probabilistic matrix factorization. IEEE Access, 2018, 6, 62815- 62825.
doi: 10.1109/ACCESS.2018.2877137
|
| 18 |
ZHANG Y W, YIN C H, WU Q L, et al. Location-aware deep collaborative filtering for service recommendation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(6): 3796- 3807.
|
| 19 |
LIAN D F, WU Y J, GE Y, et al. Geography-aware sequential location recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 2009-2019.
|
| 20 |
WANG Q R, ZHANG M, ZHANG Y W, et al. Location-based deep factorization machine model for service recommendation. Applied Intelligence, 2022, 52(9): 9899- 9918.
doi: 10.1007/s10489-021-02998-9
|
| 21 |
JIA Z H, JIN L, ZHANG Y W, et al. Location-aware Web service QoS prediction via deep collaborative filtering. IEEE Transactions on Computational Social Systems, 2022, 10(6): 3524- 3535.
|
| 22 |
ZHU S Y, DING J M, YANG J Y. Location-aware deep interaction forest for Web service QoS prediction. Applied Sciences, 2024, 14(4): 1450.
doi: 10.3390/app14041450
|
| 23 |
WU X, FAN Y S, ZHANG J, et al. QF-RNN: QI-matrix factorization based RNN for time-aware service recommendation[C]//Proceedings of the IEEE International Conference on Services Computing. Washington D.C., USA: IEEE Press, 2019: 202-209.
|
| 24 |
LI B Z, YE C Y, YU X Z, et al. QoS Prediction based on temporal information and request context. Service Oriented Computing and Applications, 2021, 15(3): 231- 244.
doi: 10.1007/s11761-021-00322-4
|
| 25 |
HU S X, ZOU G B, ZHANG B F, et al. Temporal-aware QoS prediction via dynamic graph neural collaborative learning[C]//Proceedings of the International Conference on Service-Oriented Computing. Berlin, Germany: Springer, 2022: 125-133.
|
| 26 |
ZOU G B, HUANG Y T, HU S X, et al. TRCF: temporal reinforced collaborative filtering for time-aware QoS prediction. IEEE Transactions on Services Computing, 2023, 17(4): 1847- 1860.
|
| 27 |
TANG C H, ZHAO S Y, CHEN B B, et al. A two-dimensional time-aware cloud service recommendation approach with enhanced similarity and trust. Journal of Parallel and Distributed Computing, 2024, 190, 104889.
doi: 10.1016/j.jpdc.2024.104889
|
| 28 |
TANG P, RUAN T, WU H, et al. Temporal pattern-aware QoS prediction by biased non-negative tucker factorization of tensors. Neurocomputing, 2024, 582, 127447.
doi: 10.1016/j.neucom.2024.127447
|
| 29 |
WANG X, LIU X, LIU J, et al. Relational graph neural network with neighbor interactions for bundle recommendation service[C]//Proceedings of the IEEE International Conference on Web Services (ICWS). Washington D.C., USA: IEEE Press, 2021: 167-172.
|
| 30 |
WEI C Y, FAN Y S, ZHANG J. High-order social graph neural network for service recommendation. IEEE Transactions on Network and Service Management, 2022, 19(4): 4615- 4628.
doi: 10.1109/TNSM.2022.3186396
|
| 31 |
CAO B Q, ZHANG L L, PENG M, et al. Web service recommendation via combining bilinear graph representation and xDeepFM quality prediction. IEEE Transactions on Network and Service Management, 2023, 20(2): 1078- 1092.
doi: 10.1109/TNSM.2023.3234067
|
| 32 |
KHELLOUFI A, NING H S, NAOURI A, et al. A multimodal latent-features-based service recommendation system for the social Internet of Things. IEEE Transactions on Computational Social Systems, 2024, 11(4): 5388- 5403.
doi: 10.1109/TCSS.2024.3360518
|
| 33 |
LU J W, LI D N, CAI W C, et al. SAC-GNN: multi-layer dual graph neural network for service recommendation. Expert Systems with Applications, 2025, 293, 128608.
doi: 10.1016/j.eswa.2025.128608
|
| 34 |
ZHANG E, MA W M, ZHANG J K, et al. A service recommendation system based on dynamic user groups and reinforcement learning. Electronics, 2023, 12(24): 5034.
doi: 10.3390/electronics12245034
|
| 35 |
ZHANG M W, QU Y J, LI Y G, et al. RLISR: a deep reinforcement learning based interactive service recommendation model. IEEE Access, 2024, 12, 90204- 90217.
doi: 10.1109/ACCESS.2024.3420395
|
| 36 |
ZHANG Y, QIU R H, LIU J J, et al. ROLeR: effective reward shaping in offline reinforcement learning for recommender systems[C]//Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2024: 3269-3278.
|
| 37 |
WANG J, KARATZOGLOU A, ARAPAKIS I, et al. Reinforcement learning-based recommender systems with large language models for state reward and action modeling[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2024: 375-385.
|
| 38 |
SEFATI S S, ARASTEH B, HALUNGA S, et al. Adaptive service recommendation in Internet of Things using a reinforcement learning and optimization algorithm. IEEE Transactions on Network and Service Management, 2025, 22(5): 4551- 4576.
doi: 10.1109/TNSM.2025.3585995
|
| 39 |
RONG D L, YAO L N, ZHENG Y T, et al. LLM enhanced representation for cold start service recommendation[C]//Proceedings of the International Conference on Service-Oriented Computing. Singapore: Springer, 2024: 153-167.
|
| 40 |
LIU H Y, ZHANG Z K, LI H H, et al. Large language model aided QoS prediction for service recommendation[C]//Proceedings of the IEEE International Conference on Software Services Engineering (SSE). Washington D.C., USA: IEEE Press, 2025: 116-127.
|
| 41 |
PENG Q, CAO B Q, XIE X, et al. LLMSRec: large language model with service network augmentation for Web service recommendation. Knowledge-Based Systems, 2025, 323, 113710.
doi: 10.1016/j.knosys.2025.113710
|
| 42 |
ZHU Y Q, LIN Z Y, FAN J Y, et al. LLM-CoSR: noise-resistant service recommendation via LLM-augmented graph contrastive learning[C]//Proceedings of the IEEE International Conference on Web Services (ICWS). Washington D.C., USA: IEEE Press, 2025: 1-10.
|
| 43 |
ZOU G B, LI P T, YANG S, et al. LLM-enhanced service semantic representation and category co-occurrence feature augmentation for Web API recommendation. Information Processing & Management, 2025, 62(6): 104219.
|
| 44 |
GAO C M, CHEN R J, YUAN S, et al. SPRec: self-play to debias LLM-based recommendation[C]//Proceedings of the ACM on Web Conference 2025. New York, USA: ACM Press, 2025: 5075-5084.
|
| 45 |
LIN X Y, WANG W J, LI Y Q, et al. Data-efficient fine-tuning for LLM-based recommendation[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2024: 365-374.
|
| 46 |
HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Perth, Australia: International World Wide Web Conferences Steering Committee, 2017: 173-182.
|
| 47 |
ZHOU G R, MOU N, FAN Y, et al. Deep interest evolution network for click-through rate prediction[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 5941-5948.
|
| 48 |
LIU Q, WU S, WANG L, et al. Predicting the next location: a recurrent model with spatial and temporal contexts[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 1-9.
|
| 49 |
LIU Z, LI L, MENG L. An approach for personalized POI recommendation based on hybrid graph neural network. Journal of Nanjing University (Natural Sciences), 2023, 59(3): 373- 387.
|
| 50 |
张红霞, 武梦德, 王登岳, 等. 基于服务负载的时序QoS预测. 计算机系统应用, 2023, 32(11): 286- 293.
|
|
ZHANG H X, WU M D, WANG D Y, et al. Time-series QoS prediction based on service load. Computer Systems and Applications, 2023, 32(11): 286- 293.
|
| 51 |
ZHANG S Z, ZHANG D K, WU Y H, et al. Service recommendation model based on trust and QoS for social Internet of Things. IEEE Transactions on Services Computing, 2023, 16(5): 3736- 3750.
doi: 10.1109/TSC.2023.3274647
|
| 52 |
WANG L N, ZHANG X Y, WANG T, et al. Diversified and scalable service recommendation with accuracy guarantee. IEEE Transactions on Computational Social Systems, 2020, 8(5): 1182- 1193.
|
| 53 |
CHEN L, GAO C, DU X Y, et al. Enhancing ID-based recommendation with large language models. ACM Transactions on Information Systems, 2025, 43(5): 1- 30.
|