[1] XU X Y,XU S Z,JIN L H,et al.Characteristic analysis of Otsu threshold and its applications[J].Pattern Recognition Letters,2011,32(7):956-961. [2] OTSU N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66. [3] 杨静,李卫国,郭文霞.基于足球机器人的彩色图像分割方法研究[J].内蒙古工业大学学报(自然科学版),2013,32(2):30-33. YANG J,LI W G,GUO W X.Research on color image segmentation method based on soccer robot[J].Journal of Inner Mongolia University of Technology(Natural Science Edition),2013,32(2):30-33.(in Chinese) [4] 王乐,纪竟,邓彦松.基于图像分割的水下管道检测机器人设计[J].机器人技术与应用,2017(4):37-40. WANG L,JI J,DENG Y S.Design of underwater pipeline inspection robot based on image segmentation[J].Robot Technique and Application,2017(4):37-40.(in Chinese) [5] ZHAO Y C,LIN F S,LIU S G,et al.Separate degree based Otsu and signed similarity driven level set for segmenting and counting anthrax spores[J].Computers and Electronics in Agriculture,2020,169:1-5. [6] 林伟明,胡云堂.基于YUV颜色模型的番茄收获机器人图像分割方法[J].农业机械学报,2012,43(12):176-180. LIN W M,HU Y T.Image segmentation method of tomato harvesting robot based on YUV color model[J].Journal of Agricultural Machinery,2012,43(12):176-180.(in Chinese) [7] TAO W B,JIN H,ZHANG Y M.Color image segmentation based on mean shift and normalized cuts[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2007,37(5):1382-1389. [8] 雷俊,王立辉,何芸倩,等.适用于机器人视觉的图像分割方法[J].系统工程与电子技术,2017,39(7):1653-1659. LEI J,WANG L H,HE Y Q,et al.Image segmentation method suitable for robot vision[J].Journal of Systems Engineering and Electronics,2017,39(7):1653-1659.(in Chinese) [9] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651. [10] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [11] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin,Germany:Springer,2015:234-241. [12] CHEN L J,PAPANDREOU G,KOKKINOS I,et al.Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]//Proceedings of the 3rd International Conference on Learning Representations.San Diego,USA:[s.n.],2014:1-14. [13] CHEN L J,PAPANDREOU G,KOKKINOS I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. [14] CHEN L J,ZHU Y K,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:801-818. [15] ZHAO H S,SHI J P,QI X J,et al.Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2881-2890. [16] ZHAO Y C,LIN F S,LIU S G,et al.Constrained-focal-loss based deep learning for segmentation of spores[J].IEEE Access,2019,7:165029-165038. [17] HUANG J J,ZHU Z,HUANG G.Multi-stage HRNet:multiple stage high-resolution network for human pose estimation[EB/OL].(2019-10-14)[2020-10-25].https://arxiv.org/pdf/1910.05901.pdf. [18] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:1251-1258. [19] HAN K,WANG Y H,TIAN Q,et al.GhostNet:more features from cheap operations[C]//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press.2020:1580-1589. [20] HU J,SHEN L,SUN G,et al.Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press.2018:7132-7141. [21] CHEN L,ZHANG H W,XIAO J,et al.SCA-CNN:spatial and channel-wise attention in convolutional networks for image captioning[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press.2017:5659-5667. [22] GUPTA S,ARBELAEZ P,MALIK J.Perceptual organization and recognition of indoor scenes from RGB-D images[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2013:564-571. [23] HE K M,GIRSHICK R,DOLLÁR P.Rethinking imageNet pre-training[C]//Proceedings of 2019 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2019:4918-4927. [24] KINGMA D P,BA J.Adam:a method for stochastic optimization[EB/OL].(2015-07-20)[2020-10-25].https://arxiv.org/pdf/1412.6980v7.pdf. [25] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:2818-2826. |