| [1] CABALLERO BARAJAS K L, AKELLA R.Dynamically modeling patient's health state from electronic medical records:a time series approach[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2015:69-78. [2] YU B, YIN H T, ZHU Z X.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]//Proceedings of the 27th IEEE International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2018:328-339.
 [3] KRISTJANPOLLER W, FADIC A, MINUTOLO M C.Volatility forecast using hybrid neural network models[J].Expert Systems with Applications, 2014, 41(5):2437-2442.
 [4] YE C, KUMAR B V K V, COIMBRA M T.Heartbeat classification using morphological and dynamic features of ECG signals[J].IEEE Transactions on Bio-Medical Engineering, 2012, 59(10):2930-2941.
 [5] 卓勤政.基于深度学习的网络流量分析研究[D].南京:南京理工大学, 2018. ZHUO Q Z.Research on network traffic analysis based on deep learning[D].Nanjing:Nanjing University of Science and Technology, 2018.(in Chinese)
 [6] 原继东.时间序列分类算法研究[D].北京:北京交通大学, 2016. YUAN J D.Research on time series classification[D].Beijing:Beijing Jiaotong University, 2016.(in Chinese)
 [7] 谭振宁.基于深度学习的时序预测和分类[D].广州:华南理工大学, 2020. TAN Z N.Time series prediction and classification based on deep learning[D].Guangzhou:South China University of Technology, 2020.(in Chinese)
 [8] WANG Z G, YAN W Z, OATES T.Time series classification from scratch with deep neural networks:a strong baseline[C]//Proceedings of 2017 International Joint Conference on Neural Networks.Washington D.C., USA:IEEE Press, 2017:1578-1585.
 [9] FALOUTSOS C, RANGANATHAN M, MANOLOPOULOS Y.Fast subsequence matching in time-series databases[J].ACM SIGMOD Record, 1994, 23(2):419-429.
 [10] SILVA D F, GIUSTI R, KEOGH E, et al.Speeding up similarity search under dynamic time warping by pruning unpromising alignments[J].Data Mining and Knowledge Discovery, 2018, 32(4):988-1016.
 [11] LIN J, KHADE R, LI Y.Rotation-invariant similarity in time series using bag-of-patterns representation[J].Journal of Intelligent Information Systems, 2012, 39(2):287-315.
 [12] LIN J, KEOGH E, WEI L, et al.Experiencing SAX:a novel symbolic representation of time series[J].Data Mining and Knowledge Discovery, 2007, 15(2):107-144.
 [13] SCHÄFER P, HÖGQVIST M.SFA:a symbolic Fourier approximation and index for similarity search in high dimensional datasets[C]//Proceedings of the 15th International Conference on Extending Database Technology.Washington D.C., USA:IEEE Press, 2012:516-527.
 [14] YE L X, KEOGH E.Time series shapelets:a new primitive for data mining[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2009:947-956.
 [15] LINES J, BAGNALL A.Time series classification with ensembles of elastic distance measures[J].Data Mining and Knowledge Discovery, 2015, 29(3):565-592.
 [16] HILLS J, LINES J, BARANAUSKAS E, et al.Classification of time series by shapelet transformation[J].Data Mining and Knowledge Discovery, 2014, 28(4):851-881.
 [17] RAKTHANMANON T, KEOGH E.Fast shapelets:a scalable algorithm for discovering time series shapelets[C]//Proceedings of 2013 SIAM International Conference on Data Mining.Philadelphia, USA:Society for Industrial and Applied Mathematics, 2013:668-676.
 [18] BAGNALL A, LINES J, HILLS J, et al.Time-series classification with COTE:the collective of transformation-based ensembles[J].IEEE Transactions on Knowledge and Data Engineering, 2015, 27(9):2522-2535.
 [19] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need?[EB/OL].[2021-02-10].https://arxivpreprintarxiv:1706.03762.
 [20] MALLAT S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
 [21] LI S Y, JIN X Y, XUAN Y, et al.Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[EB/OL].[2021-02-10].https://arxiv.org/abs/1907.00235.
 [22] DAU H A, BAGNALL A, KAMGAR K, et al.The UCR time series archive[J].IEEE/CAA Journal of Automatica Sinica, 2019, 6(6):1293-1305.
 [23] SERRÀ J, PASCUAL S, KARATZOGLOU A.Towards a universal neural network encoder for time series[EB/OL].[2021-02-10].https://arxiv.org/abs/1805.03908.
 [24] CUI Z C, CHEN W L, CHEN Y X.Multi-scale convolutional neural networks for time series classification[EB/OL].[2021-02-10].https://arxiv.org/abs/160306995.
 [25] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780.
 [26] CHUNG J, GULCEHRE C, CHO K, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].[2021-02-10].https://arxivpreprintarxiv:1412.3555.
 [27] WANG J Y, WANG Z, LI J F, et al.Multilevel wavelet decomposition network for interpretable time series analysis[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2018:2437-2446.
 |