| [1] ZOU Z X, SHI Z W, GUO Y H, et al.Object detection in 20 years:a survey[EB/OL].[2021-11-10].https://arxiv.org/abs/1905.05055. [2] CARION N, MASSA F, SYNNAEVE G, et al.End-to-end object detection with transformers[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:213-229.
 [3] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2021-11-10].https://arxiv.org/abs/2004.10934.
 [4] ZHANG D W, HAN J W, CHENG G, et al.Weakly supervised object localization and detection:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9):5866-5885.
 [5] SIVA P, XIANG T.Weakly supervised object detector learning with model drift detection[C]//Proceedings of 2011 International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2011:343-350.
 [6] WANG C, REN W, HUANG K Q, et al.Weakly supervised object localization with latent category learning[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:431-445.
 [7] BILEN H, PEDERSOLI M, TUYTELAARS T.Weakly supervised object detection with convex clustering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1081-1089.
 [8] BILEN H, VEDALDI A.Weakly supervised deep detection networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:2846-2854.
 [9] TANG P, WANG X, BAI X, et al.Multiple instance detection network with online instance classifier refinement[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2843-2851.
 [10] TANG P, WANG X G, BAI S, et al.PCL:proposal cluster learning for weakly supervised object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(1):176-191.
 [11] KOSUGI S, YAMASAKI T, AIZAWA K.Object-aware instance labeling for weakly supervised object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6064-6072.
 [12] LIN C H, WANG S W, XU D Q, et al.Object instance mining for weakly supervised object detection[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press, 2020:11482-11489.
 [13] ZENI L F, JUNG C R.Distilling knowledge from refinement in multiple instance detection networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2020:3324-3333.
 [14] WAN F, WEI P, JIAO J, et al.Min-entropy latent model for weakly supervised object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2395-2409.
 [15] TANG P, WANG X, WANG A, et al.Weakly supervised region proposal network and object detection[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:352-368.
 [16] SHEN Y, JI R, CHEN Z, et al.UWSOD:toward fully-supervised-level capacity weakly supervised object detection[C]//Proceedings of Advances in Neural Information Processing Systems.Cambridge, USA:MIT Press, 2020:268-279.
 [17] REN Z, YU Z, YANG X, et al.Instance-aware, context-focused, and memory-efficient weakly supervised object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:10598-10607.
 [18] ZHONG Y, WANG J, PENG J, et al.Boosting weakly supervised object detection with progressive knowledge transfer[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:615-631.
 [19] SINGH K K, LEE Y J.You reap what you sow:using videos to generate high precision object proposals for weakly-supervised object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:9414-9422.
 [20] CHENG G, YANG J Y, GAO D C, et al.High-quality proposals for weakly supervised object detection[J].IEEE Transactions on Image Processing, 2020, 29(1):5794-5804.
 [21] GAO M, LI A, YU R, et al.C-WSL:count-guided weakly supervised localization[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:152-168.
 [22] KIM D, LEE G, JEONG J, et al.Tell me what they're holding:weakly-supervised object detection with transferable knowledge from human-object interaction[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press, 2020:11246-11253.
 [23] CHEN L Y, YANG T, ZHANG X Y, et al.Points as queries:weakly semi-supervised object detection by points[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:8819-8828.
 [24] WANG X, GIRSHICK R, GUPTA A, et al.Non-local neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7794-7803.
 [25] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141.
 [26] LI X, WANG W, HU X, et al.Selective kernel networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:510-519.
 [27] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19.
 [28] GAO Z, XIE J, WANG Q, et al.Global second-order pooling convolutional networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:3019-3028.
 [29] WANG Q, WU B, ZHU P, et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11531-11539.
 [30] DAI Y, GIESEKE F, OEHMCKE S, et al.Attentional feature fusion[C]//Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision.Washington D.C., USA:IEEE Press, 2021:3559-3568.
 [31] ZHANG X, WEI Y, FENG J, et al.Adversarial complementary learning for weakly supervised object localization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1325-1334.
 [32] CHOE J, SHIM H.Attention-based dropout layer for weakly supervised object localization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:2219-2228.
 [33] MAI J J, YANG M, LUO W F.Erasing integrated learning:a simple yet effective approach for weakly supervised object localization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:8763-8772.
 [34] WEI Y, FENG J, LIANG X, et al.Object region mining with adversarial erasing:a simple classification to semantic segmentation approach[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1568-1576.
 [35] ZHANG X, WEI Y, KANG G, et al.Self-produced guidance for weakly-supervised object localization[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:597-613.
 [36] EVERINGHAM M, ZISSERMAN A, WILLIAMS C K I, et al.The PASCAL visual object classes challenge 2006 results[EB/OL].[2021-11-10].http://host.robots.ox.ac.uk/pascal/VOC/voc2007/guidelines.html.
 [37] EVERINGHAM M, ESLAMI S M A, GOOL L, et al.The pascal visual object classes challenge:a retrospective[J].International Journal of Computer Vision, 2015, 111(1):98-136.
 [38] UIJLINGS J R R, SANDE K, GEVERS T, et al.Selective search for object recognition[J].International Journal of Computer Vision, 2013, 104(2):154-171.
 [39] LI X, KAN M, SHAN S, et al.Weakly supervised object detection with segmentation collaboration[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:9735-9744.
 [40] WAN F, LIU C, KE W, et al.C-MIL:continuation multiple instance learning for weakly supervised object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:2199-2208.
 [41] JI R Y, LIU Z Y, ZHANG L B, et al.Multi-peak graph-based multi-instance learning for weakly supervised object detection[J].ACM Transactions on Multimedia Computing, Communications, and Applications, 2021, 17(2):1-21.
 |