| 1 | LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2002: 1150-1157. | 
																													
																							| 2 | OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971- 987.  doi: 10.1109/TPAMI.2002.1017623
 | 
																													
																							| 3 | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2005: 886-893. | 
																													
																							| 4 | SHI Y, LV Z, BI N, et al. An improved SIFT algorithm for robust emotion recognition under various face poses and illuminations. Neural Computing and Applications, 2020, 32(13): 9267- 9281.  doi: 10.1007/s00521-019-04437-w
 | 
																													
																							| 5 | MISTRY K, JASEKAR J, ISSAC B, et al. Extended LBP based facial expression recognition system for adaptive AI agent behaviour[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2018: 1-7. | 
																													
																							| 6 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778. | 
																													
																							| 7 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks. Communications of the ACM, 2020, 63(11): 139- 144.  doi: 10.1145/3422622
 | 
																													
																							| 8 | 姚乃明, 郭清沛, 乔逢春, 等. 基于生成式对抗网络的鲁棒人脸表情识别. 自动化学报, 2018, 44(5): 865- 877.  doi: 10.16383/j.aas.2018.c170477
 | 
																													
																							|  | YAO N M, GUO Q P, QIAO F C, et al. Robust facial expression recognition with generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 865- 877.  doi: 10.16383/j.aas.2018.c170477
 | 
																													
																							| 9 | ZOU M, YOU M B, AKASHI T. Reconstruction of partially occluded facial image for classification. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16(4): 600- 608.  doi: 10.1002/tee.23335
 | 
																													
																							| 10 | PAN B W, WANG S F, XIA B. Occluded facial expression recognition enhanced through privileged information[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 566-573. | 
																													
																							| 11 | YOVEL G, DUCHAINE B. Specialized face perception mechanisms extract both part and spacing information: evidence from developmental prosopagnosia. Journal of Cognitive Neuroscience, 2006, 18(4): 580- 593.  doi: 10.1162/jocn.2006.18.4.580
 | 
																													
																							| 12 | LI Y, ZENG J B, SHAN S G, et al. Patch-gated CNN for occlusion-aware facial expression recognition[C]//Proceedings of the 24th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 2209-2214. | 
																													
																							| 13 | LI Y, ZENG J B, SHAN S G, et al. Occlusion aware facial expression recognition using CNN with attention mechanism. IEEE Transactions on Image Processing, 2019, 28(5): 2439- 2450.  doi: 10.1109/TIP.2018.2886767
 | 
																													
																							| 14 | WANG K, PENG X, YANG J, et al. Region attention networks for pose and occlusion robust facial expression recognition. IEEE Transactions on Image Processing, 2020, 29(1): 4057- 4069. | 
																													
																							| 15 | DING H, ZHOU P, CHELLAPPA R. Occlusion-adaptive deep network for robust facial expression recognition[C]//Proceedings of IEEE International Joint Conference on Biometrics. Washington D. C., USA: IEEE Press, 2021: 1-9. | 
																													
																							| 16 | 王军, 赵凯, 程勇. 基于遮挡感知卷积神经网络的面部表情识别模型. 计算机工程, 2021, 47(10): 242- 251.  URL
 | 
																													
																							|  | WANG J, ZHAO K, CHENG Y. Facial expression recognition model based on convolutional neural network with occlusion perception. Computer Engineering, 2021, 47(10): 242- 251.  URL
 | 
																													
																							| 17 | ZENG J, SHAN S, CHEN X. Facial expression recognition with inconsistently annotated datasets[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 227-243. | 
																													
																							| 18 | WANG K, PENG X J, YANG J F, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6896-6905. | 
																													
																							| 19 | CHEN Y J, LIU S G. Deep partial occlusion facial expression recognition via improved CNN[C]//Proceedings of International Symposium on Visual Computing. Berlin, Geramny: Springer, 2020: 451-462. | 
																													
																							| 20 | RUAN L, HAN Y, SUN J, et al. Facial expression recognition in facial occlusion scenarios: a path selection multi-network. Displays, 2022, 74, 102245.  doi: 10.1016/j.displa.2022.102245
 | 
																													
																							| 21 | LUCEY P, COHN J F, KANADE T, et al. The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2010: 94-101. | 
																													
																							| 22 | LYONS M, AKAMATSU S, KAMACHI M, et al. Coding facial expressions with Gabor wavelets[C]//Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition. Washington D. C., USA: IEEE Press, 2002: 200-205. | 
																													
																							| 23 | ZHANG R. Making convolutional networks shift-invariant again[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: International Machine Learning Society, 2019: 12712-12722. | 
																													
																							| 24 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19. | 
																													
																							| 25 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826. | 
																													
																							| 26 | LI S, DENG W H, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2584-2593. | 
																													
																							| 27 | BARSOUM E, ZHANG C, FERRER C C, et al. Training deep networks for facial expression recognition with crowd-sourced label distribution[C]//Proceedings of the 18th ACM International Conference on Multimodal Interaction. New York, USA: ACM Press, 2016: 279-283. | 
																													
																							| 28 | GOODFELLOW I J, ERHAN D, CARRIER P L, et al. Challenges in representation learning: a report on three machine learning contests[C]//Proceedings of the 20th International Conference on Neural Information Processing. Berlin, Germany: Springer, 2013: 117-124. | 
																													
																							| 29 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: [s. n. ], 2015: 1-10. | 
																													
																							| 30 | LI S, DENG W H. Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 28(1): 356- 370.  doi: 10.1109/TIP.2018.2868382
 | 
																													
																							| 31 | FARZANEH A H, QI X J. Facial expression recognition in the wild via deep attentive center loss[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 2401-2410. | 
																													
																							| 32 | HUANG C. Combining convolutional neural networks for emotion recognition[C]//Proceedings of IEEE MIT Undergraduate Research Technology Conference. Washington D. C., USA: IEEE Press, 2018: 1-4. | 
																													
																							| 33 | GEORGESCU M I, IONESCU R T, POPESCU M. Local learning with deep and handcrafted features for facial expression recognition. IEEE Access, 2019, 7, 64827- 64836.  doi: 10.1109/ACCESS.2019.2917266
 | 
																													
																							| 34 | MA F Y, SUN B, LI S T. Facial expression recognition with visual transformers and attentional selective fusion[J/OL]. IEEE Transactions on Affective Computing: 1-9[2022-07-26]. https://ieeexplore.ieee.org/document/9585378 . | 
																													
																							| 35 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 2020, 128(2): 336- 359. |