| 1 |
FEIGELSON H S, POWERS J D, KUMAR M, et al. Melanoma incidence, recurrence, and mortality in an integrated healthcare system: a retrospective cohort study. Cancer Medicine, 2019, 8(9): 4508- 4516.
doi: 10.1002/cam4.2252
|
| 2 |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 2021, 71(1): 7- 33.
doi: 10.3322/caac.21654
|
| 3 |
徐莉莉, 张丽成, 田雪, 等. 中国皮肤癌住院患者流行病学的研究. 中国循证医学杂志, 2020, 20(11): 1280- 1283.
URL
|
|
XU L L, ZHANG L C, TIAN X, et al. Epidemiological research on inpatients with skin cancer in China. Chinese Journal of Evidence-Based Medicine, 2020, 20(11): 1280- 1283.
URL
|
| 4 |
HAVAEI M, MAO X, WANG Y, et al. Conditional generation of medical images via disentangled adversarial inference. Medical Image Analysis, 2021, 72(8): 102106.
|
| 5 |
卢淑祺, 窦志成, 文继荣. 手术病例中结构化数据抽取研究. 计算机学报, 2019, 42(12): 2754- 2768.
URL
|
|
LU S Q, DOU Z C, WEN J R. Research on structural data extraction in surgical cases. Chinese Journal of Computers, 2019, 42(12): 2754- 2768.
URL
|
| 6 |
叶中玉, 吴梦麟. 融合时序监督和注意力机制的脉络膜新生血管分割. 计算机科学, 2021, 48(8): 118- 124.
URL
|
|
YE Z Y, WU M L. Choroidal neovascularization segmentation combining temporal supervision and attention mechanism. Computer Science, 2021, 48(8): 118- 124.
URL
|
| 7 |
ESTEVA A, ROBICQUET A, RAMSUNDAR B, et al. A guide to deep learning in healthcare. Nature Medicine, 2019, 25(1): 24- 29.
doi: 10.1038/s41591-018-0316-z
|
| 8 |
MAHBOD A, SCHAEFER G, WANG C L, et al. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Computer Methods and Programs in Biomedicine, 2020, 193(7): 75- 84.
|
| 9 |
WANG L Y, CHEN A X, ZHANG Y, et al. AK-DL: a shallow neural network model for diagnosing actinic keratosis with better performance than deep neural networks. Diagnostics, 2020, 10(4): 21- 25.
|
| 10 |
KHAN M A, SHARIF M, AKRAM T, et al. Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization. Diagnostics, 2021, 11(5): 811- 819.
doi: 10.3390/diagnostics11050811
|
| 11 |
HOSNY K M, KASSEM M A, FOUAD M M. Classification of skin lesions into seven classes using transfer learning with AlexNet. Journal of Digital Imaging, 2020, 33(5): 1325- 1334.
doi: 10.1007/s10278-020-00371-9
|
| 12 |
AL MASNI M A, KIM D H, KIM T S. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Computer Methods and Programs in Biomedicine, 2020, 190(6): 51- 63.
|
| 13 |
HUANG H W, HSU B W Y, LEE C H, et al. Development of a light-weight deep learning model for cloud applications and remote diagnosis of skin cancers. The Journal of Dermatology, 2021, 48(3): 310- 316.
doi: 10.1111/1346-8138.15683
|
| 14 |
MOBINY A, SINGH A, VAN NGUYEN H. Risk-aware machine learning classifier for skin lesion diagnosis. Journal of Clinical Medicine, 2019, 8(8): 41- 53.
|
| 15 |
KHARAZMI P, KALIA S, LUI H, et al. A feature fusion system for basal cell carcinoma detection through data-driven feature learning and patient profile. Skin Research and Technology, 2018, 24(2): 256- 264.
doi: 10.1111/srt.12422
|
| 16 |
LIU Y, JAIN A, ENG C, et al. A deep learning system for differential diagnosis of skin diseases. Nature Medicine, 2020, 26(6): 900- 908.
doi: 10.1038/s41591-020-0842-3
|
| 17 |
PACHECO A G C, KROHLING R A. The impact of patient clinical information on automated skin cancer detection. Computers in Biology and Medicine, 2020, 116(7): 45- 54.
|
| 18 |
LI W P, ZHUANG J X, WANG R X, et al. Fusing metadata and dermoscopy images for skin disease diagnosis[C]//Proceedings of the 17th International Symposium on Biomedical Imaging. Washington D. C., USA: IEEE Press, 2020: 1996-2000.
|
| 19 |
PACHECO A G C, KROHLING R A. An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification. IEEE Journal of Biomedical and Health Informatics, 2021, 25(9): 3554- 3563.
|
| 20 |
HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2261-2269.
|
| 21 |
ALHUDHAIF A, POLAT K, KARAMAN O. Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images. Expert Systems With Applications, 2021, 180(5): 141- 152.
|
| 22 |
过仕明, 靖继鹏. 元数据在网络信息资源组织与检索中的作用. 情报科学, 2004, 22(12): 1455- 1457.
URL
|
|
GUO S M, JING J P. The metadata function of network information resource organization and retrieval. Information Science, 2004, 22(12): 1455- 1457.
URL
|
| 23 |
|
| 24 |
ANDRE G C, PACHECO. PAD-UFES-20: a skin lesion dataset composed of patient data and clinical images collected from smartphones. Data in Brief, 2020, 32(4): 1- 10.
|
| 25 |
|
| 26 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 248-255.
|
| 27 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
| 28 |
|
| 29 |
GESSERT N, NIELSEN M, SHAIKH M, et al. Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data. MethodsX, 2020, 7(3): 100864.
|
| 30 |
PACHECO A G C, ALI A R, TRAPPENBERG T. Skin cancer detection based on deep learning and entropy to detect outlier samples[EB/OL]. [2022-06-25]. https://arxiv.org/abs/1909.04525.
|
| 31 |
PRECHELT L. Early stopping-but when?[M]//ORR G B, MULLER K R. Neural networks: tricks of the trade. Washington D. C., USA: IEEE Press, 1998: 234-243.
|
| 32 |
何迎. 双级卷积神经网络高光谱图像分类[D]. 兰州: 兰州大学.
|
|
HE Y. Hyperspectral image classification based on two-stage convolutional neural network[D]. Lanzhou: Lanzhou University. (in Chinese)
|