| 1 | LIN Z, LARRY S D. Shape-based human detection and segmentation via hierarchical part-template matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 604- 618.  doi: 10.1109/TPAMI.2009.204
 | 
																													
																							| 2 | QIN X H, WANG X F, ZHOU X, et al. Counting people in various crowed density scenes using support vector regression. Journal of Image and Graphics, 2013, 18(4): 392- 398. | 
																													
																							| 3 | SINDAGI V A, PATEL V M. Multi-level bottom-top and top-bottom feature fusion for crowd counting[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1002-1012. | 
																													
																							| 4 | LIU L B, QIU Z L, LI G B, et al. Crowd counting with deep structured scale integration network[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1774-1783. | 
																													
																							| 5 | 黄奕秋, 胡晓, 杨佳信, 等. 基于背景抑制与上下文感知的人群计数网络. 计算机工程, 2022, 48(9): 314- 320.  URL
 | 
																													
																							|  | HUANG Y Q, HU X, YANG J X, et al. Crowd counting network based on background suppression and context awareness. Computer Engineering, 2022, 48(9): 314- 320.  URL
 | 
																													
																							| 6 | BABU S D, SURYA S, VENKATESH B R. Switching convolutional neural network for crowd counting[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 5744-5752. | 
																													
																							| 7 | ZHANG Y Y, ZHOU D S, CHEN S Q, et al. Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 589-597. | 
																													
																							| 8 | 余鹰, 李剑飞, 钱进, 等. 基于多尺度特征融合的抗背景干扰人群计数网络. 模式识别与人工智能, 2022, 35(10): 915- 927.  URL
 | 
																													
																							|  | YU Y, LI J F, QIAN J, et al. Anti-background interference crowd counting network based on multi-scale feature fusion. Pattern Recognition and Aritifical Intelligence, 2022, 35(10): 915- 927.  URL
 | 
																													
																							| 9 | 万洪林, 王晓敏, 彭振伟, 等. 基于新型多尺度注意力机制的密集人群计数算法. 电子与信息学报, 2022, 44(3): 1129- 1136.  URL
 | 
																													
																							|  | WAN H L, WANG X M, PENG Z W, et al. Dense crowd counting algorithm based on novel multi-scale attention mechanism. Journal of Electronics & Information Technology, 2022, 44(3): 1129- 1136.  URL
 | 
																													
																							| 10 | SINDAGI V A, PATEL V M. Generating high-quality crowd density maps using contextual pyramid cnns[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 1861-1870. | 
																													
																							| 11 | 严芳芳, 吴秦. 多通道融合分组卷积神经网络的人群计数算法. 小型微型计算机系统, 2020, 41(10): 2200- 2205.  doi: 10.3969/j.issn.1000-1220.2020.10.029
 | 
																													
																							|  | YAN F F, WU Q. Crowd counting algorithm based on multi-channel fusion group convolutional neural network. Journal of Chinese Computer Systems, 2020, 41(10): 2200- 2205.  doi: 10.3969/j.issn.1000-1220.2020.10.029
 | 
																													
																							| 12 | LI Y H, ZHANG F, CHEN D. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1091-1100. | 
																													
																							| 13 | CAO X K, WANG Z P, ZHAO Y Y, et al. Scale aggregation network for accurate and efficient crowd counting[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 734-750. | 
																													
																							| 14 | ZHANG A R, SHEN J Y, XIAO Z H, et al. Relational attention network for crowd counting[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 6788-6797. | 
																													
																							| 15 | 吴奇元, 王晓东, 章联军, 等. 融合注意力机制与上下文密度图的人群计数网络. 计算机工程, 2022, 48(5): 235- 241.  URL
 | 
																													
																							|  | WU Q Y, WANG X D, ZHANG L J, et al. Crowd counting network with attention mechanism and contextual density map. Computer Engineering, 2022, 48(5): 235- 241.  URL
 | 
																													
																							| 16 | GAO J Y, WANG Q, YUAN Y. SCAR: spatial-/channel-wise attention regression networks for crowd counting. Neurocomputing, 2019, 363, 1- 8.  doi: 10.1016/j.neucom.2019.08.018
 | 
																													
																							| 17 | GAO G S, LIU Q J, WANG Y H. Counting dense objects in remote sensing images[C]//Proceedings of International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2020: 4137-4141. | 
																													
																							| 18 | 郭爱心, 夏殷锋, 王大为, 等. 一种抗背景干扰的多尺度人群计数算法. 计算机工程, 2022, 48(5): 251- 257.  URL
 | 
																													
																							|  | GUO A X, XIA Y F, WANG D W, et al. A multi-scale crowd counting algorithm with removing background interference. Computer Engineering, 2022, 48(5): 251- 257.  URL
 | 
																													
																							| 19 | THANASUTIVES P, FUKUI K, NUMAO M, et al. Encoder-decoder based convolutional neural networks with multi-scale-aware modules for crowd counting[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 2382-2389. | 
																													
																							| 20 | 张宇倩, 李国辉, 雷军, 等. FF-CAM: 基于通道注意机制前后端融合的人群计数. 计算机学报, 2021, 44(2): 304- 317.  URL
 | 
																													
																							|  | ZHANG Y Q, LI G H, LEI J, et al. FF-CAM: crowd counting based on front-end and back-end fusion of channel attention mechanism. Chinese Journal of Computers, 2021, 44(2): 304- 317.  URL
 | 
																													
																							| 21 | WANG F S, SANG J, WU Z Y, et al. Hybrid attention network based on progressive embedding scale-context for crowd counting. Information Sciences, 2022, 591, 306- 318.  doi: 10.1016/j.ins.2022.01.046
 | 
																													
																							| 22 | IDREES H, SALEEMI I, SEIBERT C, et al. Multi-source multi-scale counting in extremely dense crowd images[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2013: 2547-2554. | 
																													
																							| 23 | JIANG X L, XIAO Z H, ZHANG B C, et al. Crowd counting and density estimation by trellis encoder-decoder networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 6133-6142. | 
																													
																							| 24 | LIU N, LONG Y C, ZOU C Q, et al. ADCrowdNet: an attention-injective deformable convolutional network for crowd understanding[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 3225-3234. | 
																													
																							| 25 | QIAN W, TOBY P B. Crowd counting via segmentation guided attention networks and curriculum loss. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15233- 15243.  doi: 10.1109/TITS.2021.3138896
 |