| 1 | WANG H L, QIN K, ZAKARI R Y, et al. Deep neural network-based relation extraction: an overview. Neural Computing and Applications, 2022, 34 (6): 4781- 4801.  doi: 10.1007/s00521-021-06667-3
 | 
																													
																							| 2 | LIU C Y, SUN W B, CHAO W H, et al. Convolution neural network for relation extraction[C]//Proceedings of International Conference on Advanced Data Mining and Applications. Berlin, Germany: Springer, 2013: 231-242. | 
																													
																							| 3 |  | 
																													
																							| 4 | NAYAK T, NG H T. Effective modeling of encoder-decoder architecture for joint entity and relation extraction. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (5): 8528- 8535.  doi: 10.1609/aaai.v34i05.6374
 | 
																													
																							| 5 | XUE F Z, SUN A X, ZHANG H, et al. GDPNet: refining latent multi-view graph for relation extraction. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (16): 14194- 14202.  doi: 10.1609/aaai.v35i16.17670
 | 
																													
																							| 6 | YE D M, LIN Y K, LI P, et al. Packed levitated marker for entity and relation extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2022: 4904-4917. | 
																													
																							| 7 | 胡晗, 刘鹏远. 小样本关系分类研究综述. 中文信息学报, 2022, 36 (2): 1- 11.  URL
 | 
																													
																							|  | HU H, LIU P Y. Few-shot relation classification: a survey. Journal of Chinese Information Processing, 2022, 36 (2): 1- 11.  URL
 | 
																													
																							| 8 | MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. New York, USA: ACM Press, 2009: 1003-1011. | 
																													
																							| 9 | BHARTIYA A, BADOLA K, MAUSAM. DiS-ReX: a multilingual dataset for distantly supervised relation extraction[EB/OL]. [2022-06-10]. https://arxiv.org/abs/2104.08655 . | 
																													
																							| 10 |  | 
																													
																							| 11 | SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 4080-4090. | 
																													
																							| 12 | MUNKHDALAI T, YU H. Meta networks[C]//Proceedings of International Conference on Machine Learning. New York, USA: PMLR, 2017: 2554-2563. | 
																													
																							| 13 | HAN X, ZHU H, YU P F, et al. FewRel: a large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation[EB/OL]. [2022-06-10]. https://arxiv.org/abs/1810.10147 . | 
																													
																							| 14 | XIE Y X, XU H, LI J E, et al. Heterogeneous graph neural networks for noisy few-shot relation classification. Knowledge-Based Systems, 2020, 194, 105548.  doi: 10.1016/j.knosys.2020.105548
 | 
																													
																							| 15 | QU M, GAO T, XHONNEUX L P, et al. Few-shot relation extraction via Bayesian meta-learning on relation graphs[C]//Proceedings of International Conference on Machine Learning. New York, USA: PMLR, 2020: 7867-7876. | 
																													
																							| 16 |  | 
																													
																							| 17 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2022-06-10]. https://arxiv.org/abs/1810.04805 . | 
																													
																							| 18 | SOARES L B, FITZGERALD N, LING J, et al. Matching the blanks: distributional similarity for relation learning[EB/OL]. [2022-06-10]. https://arxiv.org/abs/1906.03158 . | 
																													
																							| 19 | PAHDE F, PUSCAS M, KLEIN T, et al. Multimodal prototypical networks for few-shot learning[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 2643-2652. | 
																													
																							| 20 | PARNAMI A, LEE M. Few-shot keyword spotting with prototypical networks[C]//Proceedings of the 7th International Conference on Machine Learning Technologies. New York, USA: ACM Press, 2022: 277-283. | 
																													
																							| 21 | GAO T Y, HAN X, LIU Z Y, et al. Hybrid attention-based prototypical networks for noisy few-shot relation classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 6407- 6414.  doi: 10.1609/aaai.v33i01.33016407
 | 
																													
																							| 22 | YANG K J, ZHENG N T, DAI X Y, et al. Enhance prototypical network with text descriptions for few-shot relation classification[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 2273-2276. | 
																													
																							| 23 |  | 
																													
																							| 24 | WANG Y Y, BAO J W, LIU G Y, et al. Learning to decouple relations: few-shot relation classification with entity-guided attention and confusion-aware training[EB/OL]. [2022-06-10]. https://arxiv.org/abs/2010.10894 . | 
																													
																							| 25 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010. |