| 1 | WEI P C, PENG K Y, ROITBERG A, et al. Multi-modal depression estimation based on sub-attentional fusion[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2023: 623-639. | 
																													
																							| 2 |  FALAGAS M E ,  VARDAKAS K Z ,  VERGIDIS P I .  Under-diagnosis of common chronic diseases: prevalence and impact on human health. International Journal of Clinical Practice, 2007, 61 (9): 1569- 1579.  doi: 10.1111/j.1742-1241.2007.01423.x
 | 
																													
																							| 3 |  ZHOU X Z ,  JIN K ,  SHANG Y Y , et al.  Visually interpretable representation learning for depression recognition from facial images. IEEE Transactions on Affective Computing, 2020, 11 (3): 542- 552.  doi: 10.1109/TAFFC.2018.2828819
 | 
																													
																							| 4 | TSAKALIDIS A, LIAKATA M, DAMOULAS T, et al. Can we assess mental health through social media and smart devices? Addressing bias in methodology and evaluation[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Germany: Springer, 2019: 407-423. | 
																													
																							| 5 | 王款, 宣士斌, 何雪东, 等.  基于交叉注意力Transformer的人体姿态估计方法. 计算机工程, 2023, 49 (7): 223- 231.  URL
 | 
																													
																							|  |  WANG K ,  XUAN S B ,  HE X D , et al.  Human pose estimation method based on cross attention Transformer. Computer Engineering, 2023, 49 (7): 223- 231.  URL
 | 
																													
																							| 6 | LIU Z, LIN W, SHI Y, et al. A robustly optimized BERT pre-training approach with post-training[C]//Proceedings of China National Conference on Chinese Computational Linguistics. Berlin, Germany: Springer, 2021: 471-484. | 
																													
																							| 7 | 张应成, 杨洋, 蒋瑞, 等.  基于BiLSTM-CRF的商情实体识别模型. 计算机工程, 2019, 45 (5): 308- 314.  URL
 | 
																													
																							|  |  ZHANG Y C ,  YANG Y ,  JIANG R , et al.  Commercial intelligence entity recognition model based on BiLSTM-CRF. Computer Engineering, 2019, 45 (5): 308- 314.  URL
 | 
																													
																							| 8 |  LOSADA D E ,  GAMALLO P .  Evaluating and improving lexical resources for detecting signs of depression in text. Language Resources and Evaluation, 2020, 54 (1): 1- 24.  doi: 10.1007/s10579-018-9423-1
 | 
																													
																							| 9 | WOLOHAN J T, HIRAGA M, MUKHERJEE A, et al. Detecting linguistic traces of depression in topic-restricted text: attending to self-stigmatized depression with NLP[C]//Proceedings of the 1st International Workshop on Language Cognition and Computational Models. Stroudsburg, USA: ACL Press, 2018: 11-21. | 
																													
																							| 10 | WILLIAMSON J R, GODOY E, CHA M, et al. Detecting depression using vocal, facial and semantic communication cues[C]//Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge. New York, USA: ACM Press, 2016: 11-18. | 
																													
																							| 11 | YANG L, JIANG D M, HE L, et al. Decision tree based depression classification from audio video and language information[C]//Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge. New York, USA: ACM Press, 2016: 89-96. | 
																													
																							| 12 | LAM G, HUANG D Y, LIN W S. Context-aware deep learning for multi-modal depression detection[C]// Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2019: 3946-3950. | 
																													
																							| 13 | 韩虎, 赵启涛, 孙天岳, 等.  面向社交媒体评论的上下文语境讽刺检测模型. 计算机工程, 2021, 47 (1): 66- 71.  URL
 | 
																													
																							|  |  HAN H ,  ZHAO Q T ,  SUN T Y , et al.  Contextual sarcasm detection model for social media comments. Computer Engineering, 2021, 47 (1): 66- 71.  URL
 | 
																													
																							| 14 |  VASHA Z N ,  SHARMA B ,  ESHA I J , et al.  Depression detection in social media comments data using machine learning algorithms. Bulletin of Electrical Engineering and Informatics, 2023, 12 (2): 987- 996.  doi: 10.11591/eei.v12i2.4182
 | 
																													
																							| 15 |  TROTZEK M ,  KOITKA S ,  FRIEDRICH C M .  Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences. IEEE Transactions on Knowledge and Data Engineering, 2018, 32 (3): 588- 601. | 
																													
																							| 16 |  AMANAT A ,  RIZWAN M ,  JAVED A R , et al.  Deep learning for depression detection from textual data. Electronics, 2022, 11 (5): 2079- 9292. | 
																													
																							| 17 |  YU L X ,  JIANG W Y ,  REN Z H , et al.  Detecting changes in attitudes toward depression on Chinese social media: a text analysis. Journal of Affective Disorders, 2021, 280 (Pt A): 354- 363. | 
																													
																							| 18 |  LI Z P ,  AN Z Y ,  CHENG W C , et al.  MHA: a multimodal hierarchical attention model for depression detection in social media. Health Information Science and Systems, 2023, 11 (1): 6. | 
																													
																							| 19 |  YADAV U ,  SHARMA A K .  A novel automated depression detection technique using text transcript. International Journal of Imaging Systems and Technology, 2023, 33 (1): 108- 122. | 
																													
																							| 20 | SENN S, TLACHAC M L, FLORES R, et al. Ensembles of BERT for depression classification[C]// Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Washington D. C., USA: IEEE Press, 2022: 4691-4694. | 
																													
																							| 21 | PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2014: 1532-1543. | 
																													
																							| 22 | PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL Press, 2018: 2227-2237. | 
																													
																							| 23 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL Press, 2019: 4171-4186. | 
																													
																							| 24 | 贺小伟, 徐靖杰, 王宾, 等.  基于GRU-LSTM组合模型的云计算资源负载预测研究. 计算机工程, 2022, 48 (5): 11-17, 34.  URL
 | 
																													
																							|  |  HE X W ,  XU J J ,  WANG B , et al.  Research on cloud computing resource load forecasting based on GRU-LSTM combination model. Computer Engineering, 2022, 48 (5): 11-17, 34.  URL
 | 
																													
																							| 25 | GRATCH J, ARTSTEIN R, LUCAS G, et al. The distress analysis interview corpus of human and computer interviews[C]//Proceedings of the 9th International Conference on Language Resources and Evaluation. Paris, France: ELRA Press, 2014: 3123-3128. | 
																													
																							| 26 | SHEN Y, YANG H Y, LIN L. Automatic depression detection: an emotional audio-textual corpus and a GRU/BiLSTM-based model[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 6247-6251. | 
																													
																							| 27 |  LIU X Y ,  WU J X ,  ZHOU Z H .  Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics, 2009, 39 (2): 539- 550. | 
																													
																							| 28 | ALHANAI T, GHASSEMI M, GLASS J. Detecting depression with audio/text sequence modeling of interviews[C]//Proceedings of the Annual Conference of the International Speech Communication Association. Baixas, France: ISCA Press, 2018: 1716-1720. |