| 1 | 董祥千, 郭兵, 沈艳, 等. 一种高效安全的去中心化数据共享模型. 计算机学报, 2018, 41(5): 1021- 1036.  URL
 | 
																													
																							|  | DONG X Q, GUO B, SHEN Y, et al. An efficient and secure decentralizing data sharing model. Chinese Journal of Computers, 2018, 41(5): 1021- 1036.  URL
 | 
																													
																							| 2 | 周全兴, 李秋贤, 丁红发, 等. 基于博弈论优化的高效联邦学习方案. 计算机工程, 2022, 48(8): 144-151, 159.  URL
 | 
																													
																							|  | ZHOU Q X, LI Q X, DING H F, et al. Efficient federated learning scheme based on game theory optimization. Computer Engineering, 2022, 48(8): 144-151, 159.  URL
 | 
																													
																							| 3 | ZHAN Y F, LI P, GUO S, et al. Incentive mechanism design for federated learning: challenges and opportunities. IEEE Network, 2021, 35(4): 310- 317.  doi: 10.1109/MNET.011.2000627
 | 
																													
																							| 4 | MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. [S. l. ]: PMLR, 2017: 1273-1282. | 
																													
																							| 5 | WANG L P, WANG W, LI B. CMFL: mitigating communication overhead for federated learning[C]//Proceedings of the 39th International Conference on Distributed Computing Systems. Washington D. C., USA: IEEE Press, 2019: 954-964. | 
																													
																							| 6 | NIKNAM S, DHILLON H S, REED J H. Federated learning for wireless communications: motivation, opportunities, and challenges. IEEE Communications Magazine, 2020, 58(6): 46- 51.  doi: 10.1109/MCOM.001.1900461
 | 
																													
																							| 7 | ZHAN Y F, LI P, QU Z H, et al. A learning-based incentive mechanism for federated learning. IEEE Internet of Things Journal, 2020, 7(7): 6360- 6368.  doi: 10.1109/JIOT.2020.2967772
 | 
																													
																							| 8 | WANG G, DANG C X, ZHOU Z Y. Measure contribution of participants in federated learning[C]//Proceedings of International Conference on Big Data. Washington D. C., USA: IEEE Press, 2019: 2597-2604. | 
																													
																							| 9 | 陈乃月, 金一, 李浥东, 等. 基于区块链的公平性联邦学习模型. 计算机工程, 2022, 48(6): 33- 41.  URL
 | 
																													
																							|  | CHEN N Y, JIN Y, LI Y D, et al. Federated learning model with fairness based on blockchain. Computer Engineering, 2022, 48(6): 33- 41.  URL
 | 
																													
																							| 10 | KIM H, PARK J, BENNIS M, et al. Blockchained on-device federated learning. IEEE Communications Letters, 2020, 24(6): 1279- 1283.  doi: 10.1109/LCOMM.2019.2921755
 | 
																													
																							| 11 | TOYODA K, ZHANG A N. Mechanism design for an incentive-aware blockchain-enabled federated learning platform[C]//Proceedings of International Conference on Big Data. Washington D. C., USA: IEEE Press, 2019: 395-403. | 
																													
																							| 12 | 王鑫, 周泽宝, 余芸, 等. 一种面向电能量数据的联邦学习可靠性激励机制. 计算机科学, 2022, 49(3): 31- 38.  URL
 | 
																													
																							|  | WANG X, ZHOU Z B, YU Y, et al. Reliable incentive mechanism for federated learning of electric metering data. Computer Science, 2022, 49(3): 31- 38.  URL
 | 
																													
																							| 13 | 张沁楠, 朱建明, 高胜, 等. 基于区块链和贝叶斯博弈的联邦学习激励机制. 中国科学(信息科学), 2022, 52(6): 971- 991.  URL
 | 
																													
																							|  | ZHANG Q N, ZHU J M, GAO S, et al. Incentive mechanism for federated learning based on blockchain and Bayesian game. Scientia Sinica (Informationis), 2022, 52(6): 971- 991.  URL
 | 
																													
																							| 14 | LV H T, ZHENG Z Z, LUO T, et al. Data-free evaluation of user contributions in federated learning[C]//Proceedings of the 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks. Washington D. C., USA: IEEE Press, 2021: 1-8. | 
																													
																							| 15 |  | 
																													
																							| 16 | LI Y Z, CHEN C, LIU N, et al. A blockchain-based decentralized federated learning framework with committee consensus. IEEE Network: the Magazine of Global Internetworking, 2021, 35(1): 234- 241.  doi: 10.1109/MNET.011.2000263
 | 
																													
																							| 17 | LU Y L, HUANG X H, DAI Y Y, et al. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Transactions on Industrial Informatics, 2020, 16(6): 4177- 4186.  doi: 10.1109/TII.2019.2942190
 | 
																													
																							| 18 | WAINAKH A, GUINEA A S, GRUBE T, et al. Enhancing privacy via hierarchical federated learning[C]//Proceedings of European Symposium on Security and Privacy Workshops. Washington D. C., USA: IEEE Press, 2020: 344-347. | 
																													
																							| 19 | HEGEDŰS I, DANNER G, JELASITY M. Gossip learning as a decentralized alternative to federated learning[C]//Proceedings of International Conference on Distributed Applications and Interoperable Systems. Berlin, Germany: Springer, 2019: 74-90. | 
																													
																							| 20 | DENG Y H, LYU F, REN J, et al. SHARE: shaping data distribution at edge for communication-efficient hierarchical federated learning[C]//Proceedings of the 41st International Conference on Distributed Computing Systems. Washington D. C., USA: IEEE Press, 2021: 24-34. | 
																													
																							| 21 | JIANG J Y, HU L, HU C H, et al. BACombo—bandwidth-aware decentralized federated learning. Electronics, 2020, 9(3): 440.  doi: 10.3390/electronics9030440
 | 
																													
																							| 22 | 张学旺, 殷梓杰, 冯家琦, 等. 基于区块链与可信计算的数据交易方案. 计算机应用, 2021, 41(4): 939- 944.  URL
 | 
																													
																							|  | ZHANG X W, YIN Z J, FENG J Q, et al. Data trading scheme based on blockchain and trusted computing. Journal of Computer Applications, 2021, 41(4): 939- 944.  URL
 | 
																													
																							| 23 | LIU Y, AI Z P, SUN S, et al. FedCoin: a peer-to-peer payment system for federated learning[M]//YANG Q, FAN L, YU H. Federated learning. Berlin, Germany: Springer, 2020: 125-138. | 
																													
																							| 24 | DAI W Q, DAI C K, CHOO K K R, et al. SDTE: a secure blockchain-based data trading ecosystem. IEEE Transactions on Information Forensics and Security, 2020, 15, 725- 737.  doi: 10.1109/TIFS.2019.2928256
 | 
																													
																							| 25 | ANATI I, GUERON S, JOHNSON S, et al. Innovative technology for CPU based attestation and sealing[C]//Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy. New York, USA: ACM Press, 2013: 1-7. | 
																													
																							| 26 | SONG T S, TONG Y X, WEI S Y. Profit allocation for federated learning[C]//Proceedings of International Conference on Big Data. Washington D. C., USA: IEEE Press, 2019: 2577-2586. | 
																													
																							| 27 | LI T, SAHU A K, TALWALKAR A, et al. Federated learning: challenges, methods, and future directions. IEEE Signal Processing Magazine, 2020, 37(3): 50- 60.  doi: 10.1109/MSP.2020.2975749
 | 
																													
																							| 28 | ZHANG C, XIE Y, BAI H, et al. A survey on federated learning. Knowledge-Based Systems, 2021, 216, 106775.  doi: 10.1016/j.knosys.2021.106775
 |