| 1 |  SZABO N. Formalizing and securing relationships on public networks. First Monday, 1997, 2(9): 1- 9. | 
																													
																							| 2 |  LINNHOFF-POPIEN C,  SCHNEIDER R,  ZADDACH M. Digital marketplaces unleashed. Berlin, Germany: Springer, 2018. | 
																													
																							| 3 | HIRAI Y. Defining the Ethereum virtual machine for interactive theorem provers[M]//Financial Cryptography and Data Security. Berlin, Germany: Springer, 2017: 520-535. | 
																													
																							| 4 |  | 
																													
																							| 5 | WANG Y L, CHEN X P, HUANG Y, et al. An empirical study on real bug fixes from solidity smart contract projects[EB/OL]. [2023-09-05]. http://arxiv.org/abs/2210.11990 . | 
																													
																							| 6 |  | 
																													
																							| 7 |  WANG W,  SONG J J,  XU G Q, et al. ContractWard: automated vulnerability detection models for ethereum smart contracts. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1133- 1144.  doi: 10.1109/TNSE.2020.2968505
 | 
																													
																							| 8 |  QIAN P,  LIU Z G,  HE Q M, et al. Towards automated reentrancy detection for smart contracts based on sequential models. IEEE Access, 2020, 8, 19685- 19695.  doi: 10.1109/ACCESS.2020.2969429
 | 
																													
																							| 9 | 杨慧文, 崔展齐, 陈翔, 等. 基于软件度量的Solidity智能合约缺陷预测方法. 软件学报, 2022, 33(5): 1587- 1611.  URL
 | 
																													
																							|  |  YANG H W,  CUI Z Q,  CHEN X, et al. Defect prediction for Solidity smart contracts based on software measurement. Journal of Software, 2022, 33(5): 1587- 1611.  URL
 | 
																													
																							| 10 | 赵波, 上官晨晗, 彭小燕, 等. 基于语义感知图神经网络的智能合约字节码漏洞检测方法. 工程科学与技术, 2022, 54(2): 49- 55.  URL
 | 
																													
																							|  |  ZHAO B,  SHANGGUAN C H,  PENG X Y, et al. Semantic-aware graph neural network for smart contract bytecode vulnerability detection. Advanced Engineering Sciences, 2022, 54(2): 49- 55.  URL
 | 
																													
																							| 11 |  YANG Y Q,  ZHOU D Q,  YANG X J. A multi-feature weighting based K-means algorithm for MOOC learner classification. Computers, Materials & Continua, 2019, 59(2): 625- 633. | 
																													
																							| 12 | 张光华, 刘永升, 王鹤, 等. 基于BiLSTM和注意力机制的智能合约漏洞检测方案. 信息网络安全, 2022, 22(9): 46- 54.  URL
 | 
																													
																							|  |  ZHANG G H,  LIU Y S,  WANG H, et al. Smart contract vulnerability detection scheme based on BiLSTM and attention mechanism. Netinfo Security, 2022, 22(9): 46- 54.  URL
 | 
																													
																							| 13 | MOSSBERG M, MANZANO F, HENNENFENT E, et al. Manticore: a user-friendly symbolic execution framework for binaries and smart contracts[C]//Proceedings of the 34th International Conference on Automated Software Engineering (ASE). Washington D. C., USA: IEEE Press, 2019: 1186-1189. | 
																													
																							| 14 |  LIANG H L,  PEI X X,  JIA X D, et al. Fuzzing: state of the art. IEEE Transactions on Reliability, 2018, 67(3): 1199- 1218.  doi: 10.1109/TR.2018.2834476
 | 
																													
																							| 15 | WANG S, LIU T Y, TAN L. Automatically learning semantic features for defect prediction[C]//Proceedings of the 38th International Conference on Software Engineering. Washington D. C., USA: IEEE Press, 2016: 1-10. | 
																													
																							| 16 | TSANKOV P, DAN A, DRACHSLER-COHEN D, et al. Securify: practical security analysis of smart contracts[C]//Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2018: 1-10. | 
																													
																							| 17 | JIANG B, LIU Y, CHAN W K. ContractFuzzer: fuzzing smart contracts for vulnerability detection[C]//Proceedings of the 33rd International Conference on Automated Software Engineering. New York, USA: ACM Press, 2018: 259-269. | 
																													
																							| 18 | ZHUANG Y, LIU Z G, QIAN P, et al. Smart contract vulnerability detection using graph neural networks[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2021: 3283-3290. | 
																													
																							| 19 | HUANG T H D, KAO H Y. R2-D2: color-inspired convolutional neural network (CNN)-based Android malware detections[C]//Proceedings of the IEEE International Conference on Big Data (Big Data). Washington D. C., USA: IEEE Press, 2018: 2633-2642. | 
																													
																							| 20 | SCALABRINO S, LINARES-VÁSQUEZ M, POSHYVANYK D, et al. Improving code readability models with textual features[C]//Proceedings of the 24th International Conference on Program Comprehension. Washington D. C., USA: IEEE Press, 2016: 1-10. | 
																													
																							| 21 |  WANG J,  DONG Y. Improve visual question answering based on text feature extraction. Journal of Physics: Conference Series, 2021, 1856(1): 012025.  doi: 10.1088/1742-6596/1856/1/012025
 | 
																													
																							| 22 | 江邹, 蒋慕蓉, 赵春娜, 等. 利用文本特征增强与注意力机制提高图像问答准确率. 计算机科学与应用, 2019, 9(12): 2403- 2410. | 
																													
																							|  |  JIANG Z,  JIANG M R,  ZHAO C N, et al. Improve image question and answer accuracy by using text feature enhancement and attention mechanism. Computer Science and Application, 2019, 9(12): 2403- 2410. | 
																													
																							| 23 | FANG C R, LIU Z X, SHI Y Y, et al. Functional code clone detection with syntax and semantics fusion learning[C]//Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. New York, USA: ACM Press, 2020: 516-527. | 
																													
																							| 24 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-09-05]. https://arxiv.org/pdf/1810.04805 . | 
																													
																							| 25 | MI Q, KEUNG J, XIAO Y, et al. An inception architecture-based model for improving code readability classification[C]//Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering. New York, USA: ACM Press, 2018: 139-144. | 
																													
																							| 26 |  | 
																													
																							| 27 | CHAUHAN R, GHANSHALA K K, JOSHI R C. Convolutional neural network (CNN) for image detection and recognition[C]//Proceedings of the 1st International Conference on Secure Cyber Computing and Communication. Washington D. C., USA: IEEE Press, 2018: 278-282. | 
																													
																							| 28 |  LI Z W,  LIU F,  YANG W J, et al. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 6999- 7019.  doi: 10.1109/TNNLS.2021.3084827
 | 
																													
																							| 29 |  | 
																													
																							| 30 |  LI Y,  DONG H B. Text sentiment analysis based on CNN and BiLSTM network feature fusion. Computer Application, 2018, 38(11): 3075- 3080. | 
																													
																							| 31 |  | 
																													
																							| 32 |  BREIMAN L. Random forests. Machine learning, 2001, 45, 5- 32.  doi: 10.1023/A:1010933404324
 | 
																													
																							| 33 |  PETERSON L. K-nearest neighbor. Scholarpedia, 2009, 4(2): 1883.  doi: 10.4249/scholarpedia.1883
 | 
																													
																							| 34 |  MURPHY K P. Naive bayes classifiers. University of British Columbia, 2006, 18(60): 1- 8. |