| 1 | NIRKIN Y, MASI I, TUAN A T, et al. On face segmentation, face swapping, and face perception[C]//Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition. Washington D. C., USA: IEEE Press, 2018: 98-105. | 
																													
																							| 2 | JUEFEI-XU F, WANG R, HUANG Y H, et al. Countering malicious DeepFakes: survey, battleground, and horizon. International Journal of Computer Vision, 2022, 130 (7): 1678- 1734.  doi: 10.1007/s11263-022-01606-8
 | 
																													
																							| 3 | 孙毅, 王志浩, 邓佳, 等. 人脸深度伪造检测综述. 信息安全研究, 2022, 8 (3): 241- 257.  doi: 10.12379/j.issn.2096-1057.2022.03.05
 | 
																													
																							|  | SUN Y, WANG Z H, DENG J, et al. A survey of deep face forgery detection. Journal of Information Security Research, 2022, 8 (3): 241- 257.  doi: 10.12379/j.issn.2096-1057.2022.03.05
 | 
																													
																							| 4 | 谢天, 于灵云, 罗常伟, 等. 深度人脸伪造与检测技术综述. 清华大学学报(自然科学版), 2023, 63 (9): 1350- 1365.  URL
 | 
																													
																							|  | XIE T, YU L Y, LUO C W, et al. Survey of deep face manipulation and fake detection. Journal of Tsinghua University(Science and Technology), 2023, 63 (9): 1350- 1365.  URL
 | 
																													
																							| 5 | LI M, LIU B B, HU Y J, et al. Exposing DeepFake videos by tracking eye movements[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 5184-5189. | 
																													
																							| 6 |  | 
																													
																							| 7 | DANG H, LIU F, STEHOUWER J, et al. On the detection of digital face manipulation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5781-5790. | 
																													
																							| 8 | NGUYEN H H, FANG F M, YAMAGISHI J, et al. Multi-task learning for detecting and segmenting manipulated facial images and videos[C]//Proceedings of the IEEE International Conference on Biometrics Theory, Applications and Systems. Washington D. C., USA: IEEE Press, 2019: 1-8. | 
																													
																							| 9 | LI L Z, BAO J M, ZHANG T, et al. Face X-ray for more general face forgery detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5001-5010. | 
																													
																							| 10 | WANG J K, WU Z X, OUYANG W H, et al. M2TR: multi-modal multi-scale transformers for Deepfake detection[C]//Proceedings of the 2022 International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2022: 615-623. | 
																													
																							| 11 | QIAN Y Y, YIN G J, SHENG L, et al. Thinking in frequency: face forgery detection by mining frequency-aware clues[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 86-103. | 
																													
																							| 12 | XU Y, TERHÖRST P, RAJA K, et al. A comprehensive analysis of AI biases in DeepFake detection with massively annotated databases[EB/OL]. [2023-05-10]. https://arxiv.org/abs/2208.05845v1 . | 
																													
																							| 13 | SHIOHARA K, YAMASAKI T. Detecting deepfakes with self-blended images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 18699-18708. | 
																													
																							| 14 | LI D, YANG Y X, SONG Y Z, et al. Learning to generalize: meta-learning for domain generalization. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 1- 10.  doi: 10.48550/arXiv.1710.03463
 | 
																													
																							| 15 | SUN K, YAO T P, CHEN S, et al. Dual contrastive learning for general face forgery detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (2): 2316- 2324.  doi: 10.1609/aaai.v36i2.20130
 | 
																													
																							| 16 | MALIK A, KURIBAYASHI M, ABDULLAHI S M, et al. DeepFake detection for human face images and videos: a survey. IEEE Access, 2022, 10, 18757- 18775.  doi: 10.1109/ACCESS.2022.3151186
 | 
																													
																							| 17 |  | 
																													
																							| 18 | JUNG T, KIM S, KIM K. DeepVision: Deepfakes detection using human eye blinking pattern. IEEE Access, 2020, 8, 83144- 83154.  doi: 10.1109/ACCESS.2020.2988660
 | 
																													
																							| 19 | ELHASSAN A, AL-FAWA'REH M, JAFAR M T, et al. DFT-MF: enhanced deepfake detection using mouth movement and transfer learning. SoftwareX, 2022, 19, 101115.  doi: 10.1016/j.softx.2022.101115
 | 
																													
																							| 20 | ROSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: learning to detect manipulated facial images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1-11. | 
																													
																							| 21 | ZHAO H, WEI T, ZHOU W, et al. Multi-attentional deepfake detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 2185-2194. | 
																													
																							| 22 | ZHU X Y, WANG H, FEI H Y, et al. Face forgery detection by 3D decomposition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 2928-2938. | 
																													
																							| 23 | 耿鹏志, 樊红兴, 张翌阳, 等. 基于篡改伪影的深度伪造检测方法. 计算机工程, 2021, 47 (12): 156- 162.  doi: 10.19678/j.issn.1000-3428.0060733
 | 
																													
																							|  | GENG P Z, FAN H X, ZHANG Y Y, et al. Deepfake detection method based on tampering artifacts. Computer Engineering, 2021, 47 (12): 156- 162.  doi: 10.19678/j.issn.1000-3428.0060733
 | 
																													
																							| 24 | ZHOU P, HAN X T, MORARIU V I, et al. Learning rich features for image manipulation detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1053-1061. | 
																													
																							| 25 | FRIDRICH J, KODOVSKY J. Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security, 2012, 7 (3): 868- 882.  doi: 10.1109/TIFS.2012.2190402
 | 
																													
																							| 26 | LUO Y C, ZHANG Y, YAN J C, et al. Generalizing face forgery detection with high-frequency features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 16312-16321. | 
																													
																							| 27 | SUN K, LIU H, YE Q X, et al. Domain general face forgery detection by learning to weight. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (3): 2638- 2646.  doi: 10.1609/aaai.v35i3.16367
 | 
																													
																							| 28 | 马欣, 吉立新, 李邵梅. 基于多尺度Transformer融合多域信息的伪造人脸检测. 计算机科学, 2023, 50 (10): 112- 118.  doi: 10.11896/jsjkx.220900048
 | 
																													
																							|  | MA X, JI L X, LI S M. Forgery face detection based on multi-scale transformer fusing multi-domain information. Computer Science, 2023, 50 (10): 112- 118.  doi: 10.11896/jsjkx.220900048
 | 
																													
																							| 29 | KING D E. Dlib-ml: a machine learning toolkit. Journal of Machine Learning Research, 2009, 10, 1755- 1758.  doi: 10.1145/1577069.1755843
 | 
																													
																							| 30 |  | 
																													
																							| 31 |  | 
																													
																							| 32 |  | 
																													
																							| 33 | DENG J K, GUO J, VERVERAS E, et al. RetinaFace: single-shot multi-level face localisation in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5203-5212. | 
																													
																							| 34 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.  doi: 10.1145/3065386
 | 
																													
																							| 35 | TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of International Conference on Machine Learning. [S. l.]: PMLR, 2019: 6105-6114. | 
																													
																							| 36 | CHEN S, YAO T P, CHEN Y, et al. Local relation learning for face forgery detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (2): 1081- 1088.  doi: 10.1609/aaai.v35i2.16193
 | 
																													
																							| 37 | YADAV D, SALMANI S. Deepfake: a survey on facial forgery technique using generative adversarial network[C]//Proceedings of the International Conference on Intelligent Computing and Control Systems. Washington D. C., USA: IEEE Press, 2019: 852-857. | 
																													
																							| 38 | TOLOSANA R, VERA-RODRIGUEZ R, FIERREZ J, et al. Deepfakes and beyond: a survey of face manipulation and fake detection. Information Fusion, 2020, 64, 131- 148.  doi: 10.1016/j.inffus.2020.06.014
 | 
																													
																							| 39 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 2020, 128 (2): 336- 359.  doi: 10.1007/s11263-019-01228-7
 |