Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (1): 269-276. doi: 10.19678/j.issn.1000-3428.0068462

• Development Research and Engineering Application • Previous Articles     Next Articles

End-to-End Person Search Method Based on Prototype Separation Network

ZHANG Wenxin1,*(), LIU Yujie1, WANG Zhaoyong1, SUN Haomiao1, LI Zongmin1,2   

  1. 1. College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, Shandong, China
    2. College of Big Data and Basic Science, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, Shandong, China
  • Received:2023-09-26 Online:2025-01-15 Published:2024-04-25
  • Contact: ZHANG Wenxin

基于原型分散网络的端到端行人搜索方法

张雯欣1,*(), 刘玉杰1, 王兆勇1, 孙浩淼1, 李宗民1,2   

  1. 1. 中国石油大学(华东)计算机科学与技术学院, 山东 青岛 266580
    2. 山东石油化工学院大数据与基础科学学院, 山东 东营 257061
  • 通讯作者: 张雯欣
  • 基金资助:
    国家重点研发计划(2019YFF0301800); 国家自然科学基金(61379106); 山东省自然科学基金(ZR2013FM036); 山东省自然科学基金(ZR2015FM011)

Abstract:

Person search aims to detect and identify target pedestrians in panoramic images and can be viewed as a combination of target detection and person re-identification tasks. However, the similarity in attire among different pedestrians and the appearance variations of the same person in diverse environmental conditions contribute to the increased difficulty of pedestrian identity recognition. To address this issue, a prototype separation network is proposed to enhance the network's discrimination ability by adjusting the distribution of prototypes. First, a prototype enhancement module is designed to guide the learning of the attention network through prototype features and retain more important pedestrian features using the K-max pooling method. This allows the network to focus on important local regions and learn finer-grained pedestrian features with the guidance of the prototypes, which in turn improves the network's ability to discriminate between similar pedestrians. Second, an adaptive updating prototype learning strategy is proposed to ensure that the detection of accurate candidate boxes makes a greater contribution when the prototype features are updated. Finally, distributed sparse loss ensures that the stored prototypes are well dispersed, thus enabling the network to recognize the distinctive features of pedestrians. Finally, relevant experiments are conducted on the public pedestrian search datasets CUHK-SYSU and PRW, achieving mAP (mean average precision) values of 95.1% and 49.8% and Top-1 values of 95.9% and 88.5%, respectively. The proposed method effectively improves the accuracy of person search.

Key words: person search, person re-identification, prototype, adaptive updating, distributed sparse loss

摘要:

行人搜索旨在全景图像中对目标行人进行定位和识别, 可以看作目标检测和行人重识别任务的结合。然而, 不同行人的着装相似性和同一行人在多变环境条件下的外观差异, 增加了行人身份辨别的难度。为了解决这一问题, 提出了一个原型分散网络, 通过调整原型的分布情况, 增强网络的辨别能力。首先, 设计了一个原型增强模块, 通过原型特征指导注意力网络的学习并利用K最大池化方法保留更多重要的行人特征, 借助原型的指导使网络关注更重要的区域, 学习细粒度的行人特征, 进而提高网络对相似行人的辨别能力。其次, 提出一种自适应更新的原型学习策略, 以在原型特征更新时保留更多检测精准的候选框信息。最后, 通过分布稀疏损失保证所存储的原型尽可能分散, 从而确保网络能识别到行人的可区分性特征。最终在公共的行人搜索数据集CUHK-SYSU和PRW上进行了实验, 该方法在平均精度均值(mAP)上分别达到了95.1%和49.8%, 在Top-1准确率上分别达到了95.9%和88.5%, 有效地提高了行人搜索的准确率。

关键词: 行人搜索, 行人重识别, 原型, 自适应更新, 分布稀疏损失