1 |
刘文峰, 张宇, 张宏莉, 等. 域名系统测量研究综述. 软件学报, 2022, 33(1): 211- 232.
|
|
LIU W F, ZHANG Y, ZHANG H L, et al. Survey on domain name system measurement research. Journal of Software, 2022, 33(1): 211- 232.
|
2 |
SELVI J, RODRÍGUEZ R J, SORIA-OLIVAS E. Detection of algorithmically generated malicious domain names using masked N-grams. Expert Systems with Applications, 2019, 124, 156- 163.
doi: 10.1016/j.eswa.2019.01.050
|
3 |
LIU W P, ZHONG S M. Web malware spread modelling and optimal control strategies. Scientific Reports, 2017, 7, 42308.
doi: 10.1038/srep42308
|
4 |
樊昭杉, 王青, 刘俊荣, 等. 域名滥用行为检测技术综述. 计算机研究与发展, 2022, 59(11): 2581- 2605.
|
|
FAN Z S, WANG Q, LIU J R, et al. Survey on domain name abuse detection technology. Journal of Computer Research and Development, 2022, 59(11): 2581- 2605.
|
5 |
|
|
|
6 |
TRAN D, MAC H, TONG V, et al. A LSTM based framework for handling multiclass imbalance in DGA botnet detection. Neurocomputing, 2018, 275, 2401- 2413.
doi: 10.1016/j.neucom.2017.11.018
|
7 |
BERMAN D S, BUCZAK A L, CHAVIS J S, et al. A survey of deep learning methods for cyber security. Information, 2019, 10(4): 122.
doi: 10.3390/info10040122
|
8 |
AKARSH S, SRIRAM S, POORNACHANDRAN P, et al. Deep learning framework for domain generation algorithms prediction using long short-term memory[C]//Proceedings of the 5th International Conference on Advanced Computing & Communication Systems. Washington D. C., USA: IEEE Press, 2019: 666-671.
|
9 |
AHLUWALIA A, TRAORE I, GANAME K, et al. Detecting broad length algorithmically generated domains. Berlin, Germany: Springer, 2017.
|
10 |
AASHNA A, ABAKUMOV A. Impact study of length in detecting algorithmmically generated domains[D]. Victoria, Canada: University of Victoria, 2018.
|
11 |
LIANG J B, CHEN S H, WEI Z L, et al. HAGDetector: heterogeneous DGA domain name detection model. Computers & Security, 2022, 120, 102803.
|
12 |
CUCCHIARELLI A, MORBIDONI C, SPALAZZI L, et al. Algorithmically generated malicious domain names detection based on n-grams features. Expert Systems with Applications, 2021, 170, 114551.
doi: 10.1016/j.eswa.2020.114551
|
13 |
YUN X C, HUANG J, WANG Y P, et al. Khaos: an adversarial neural network DGA with high anti-detection ability. IEEE Transactions on Information Forensics and Security, 2020, 15, 2225- 2240.
doi: 10.1109/TIFS.2019.2960647
|
14 |
JACOB D, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of IEEE Conference of the North American Chapter of the Association for Computational Linguistics. Minneapolis, USA: Association for Computational Linguistics, 2019: 4171-4186.
|
15 |
LIU Z H, ZHANG Y D, CHEN Y Z, et al. Detection of algorithmically generated domain names using the recurrent convolutional neural network with spatial pyramid pooling. Entropy, 2020, 22(9): 1058.
doi: 10.3390/e22091058
|
16 |
SERGEY I, CHRISTIAN S. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32rd International Conference on Machine Learning. New York, USA: ACM Press, 2015: 448-456.
|
17 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module. Berlin, Germany: Springer, 2018.
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 7132-7141.
|
19 |
ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]//Proceedings of NIPS'17. Cambridge, USA: MIT Press, 2017: 5998-6008.
|
20 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318- 327.
doi: 10.1109/TPAMI.2018.2858826
|
21 |
TUAN T A, LONG H V, TANIAR D. On detecting and classifying DGA botnets and their families. Computers & Security, 2022, 113, 102549.
|
22 |
QIAO Y C, ZHANG B, ZHANG W Z, et al. DGA domain name classification method based on long short-term memory with attention mechanism. Applied Sciences, 2019, 9(20): 4205.
doi: 10.3390/app9204205
|
23 |
KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 3457-3468.
|
24 |
ZAGO M, GIL PÉREZ M, MARTÍNEZ PÉREZ G. UMUDGA: a dataset for profiling DGA-based botnet. Computers & Security, 2020, 92, 101719.
|
25 |
SAMUEL S, DOMINIK T, PATRICK H, et al. FANCI: feature-based automated NXDomain classification and intelligence[C]//Proceedings of the 27th USENIX Conference on Security Symposium. Berlin, Germany: Springer, 2018: 1165-1181.
|
26 |
|
27 |
SIVAGURU R, CHOUDHARY C, YU B, et al. An evaluation of DGA classifiers[C]//Proceedings of IEEE International Conference on Big Data. Seattle, USA: IEEE Press, 2018: 5058-5067.
|
28 |
ZAGO M, GIL PÉREZ M, MARTÍNEZ PÉREZ G. UMUDGA: a dataset for profiling algorithmically generated domain names in botnet detection. Data in Brief, 2020, 30, 105400.
|
29 |
|
30 |
|
31 |
MAHMOODAZIZOL R A R, ABAKUMOV A. Dictionary-based DGAs variants detection[C]//Proceedings of International Conference on Reliable Information and Communication Technology. Berlin, Germany: Springer, 2022: 258-269.
|