1 |
KIM S, KIM W, NOH Y K, et al. Transfer learning for automated optical inspection[C]//Proceedings of 2017 International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2017: 2517-2524.
|
2 |
GIRSHICK R. Fast R-CNN[C]// Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
3 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39 (6): 1137- 1149.
|
4 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 779-788.
|
5 |
REDMON J, FARHADI A. YOLO9000: Better, Faster, Stronger[C]//Proceedings of IEEE Conference on Computer Vision & Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6517-6525.
|
6 |
|
7 |
|
8 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2117-2125.
|
9 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
10 |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 658-666.
|
11 |
KOU X , LIU S , CHENG K , et al. Development of a YOLO-V3-based model for detecting defects on steel strip surface. Measurement, 2021, 182, 109454.
doi: 10.1016/j.measurement.2021.109454
|
12 |
曹义亲, 伍铭林, 徐露. 基于改进YOLOv5算法的钢材表面缺陷检测. 图学学报, 2023, 44 (2): 335- 345.
|
|
CAO Y Q , WU M L , XU L . Steel surface defect detection based on improved YOLOv5 algorithm. Journal of Graphics, 2023, 44 (2): 335- 345.
|
13 |
王浩然. 基于YOLOv5的钢材表面缺陷检测研究[D]. 桂林: 广西师范大学, 2022.
|
|
WANG H R. Research on steel surface defects detection based on YOLOv5[D]. Guilin: Guangxi Normal University, 2022.
|
14 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2020: 12993-13000.
|
15 |
|
16 |
WANG C Y, BOCHKOVSKIY A, LIAO H. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 1-10.
|
17 |
|
18 |
NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//Proceedings of 18th International Conference on Pattern Recognition (ICPR'06). Washington D. C., USA: IEEE Press, 2006: 850-855.
|
19 |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS-improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 5561-5569.
|
20 |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2020: 390-391.
|
21 |
LIU S, HUANG D. Receptive field block Net for accurate and fast object detection[C]// Proceedings of the European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 385-400.
|
22 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2017: 4278-4284.
|
23 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
24 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2023-07-27]. https://arxiv.org/abs/1409.1556.
|
25 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|