| 1 | LIN Z H, WANG H, MAO J S, et al. Feature-aware diversified re-ranking with disentangled representations for relevant recommendation[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 3327-3335. | 
																													
																							| 2 | COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2016: 191-198. | 
																													
																							| 3 | CAI Q P, LIU S C, WANG X L, et al. Reinforcing user retention in a billion scale short video recommender system[C]//Proceedings of ACM Web Conference. New York, USA: ACM Press, 2023: 368-379. | 
																													
																							| 4 | ZHOU G R, MOU N, FAN Y, et al. Deep interest evolution network for click-through rate prediction. Artificial Intelligence, 2019, 33(1): 5941- 5948. | 
																													
																							| 5 | ZHOU G R, ZHU X Q, SONG C R, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2018: 1059-1068. | 
																													
																							| 6 | 汤佳欣, 陈阳, 周孟莹, 等. 深度学习方法在兴趣点推荐中的应用研究综述. 计算机工程, 2022, 48(1): 12-23, 42.  URL
 | 
																													
																							|  | TANG J X, CHEN Y, ZHOU M Y, et al. A survey of studies on deep learning applications in POI recommendation. Computer Engineering, 2022, 48(1): 12-23, 42.  URL
 | 
																													
																							| 7 | CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York, USA: ACM Press, 2016: 7-10. | 
																													
																							| 8 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. [2023-08-20]. http://arxvi.org/abs/1511.06939 . | 
																													
																							| 9 |  | 
																													
																							| 10 | CHEN Q, PEI C, LÜ S, et al. End-to-end user behavior retrieval in click-through rateprediction model[EB/OL]. [2023-08-20]. http://arxvi.org/abs/2108.04468 . | 
																													
																							| 11 | 钟川, 陈军. 基于精确欧氏局部敏感哈希的改进协同过滤推荐算法. 计算机工程, 2017, 43(2): 74- 78.  URL
 | 
																													
																							|  | ZHONG C, CHEN J. Improved collaborative filtering recommendation algorithm based on exact Euclidean locality sensitive Hashing. Computer Engineering, 2017, 43(2): 74- 78.  URL
 | 
																													
																							| 12 | 陈碧毅, 黄玲, 王昌栋, 等. 融合显式反馈与隐式反馈的协同过滤推荐算法. 软件学报, 2020, 31(3): 794- 805. | 
																													
																							|  | CHEN B Y, HUANG L, WANG C D, et al. Explicit and implicit feedback based collaborative filtering algorithm. Journal of Software, 2020, 31(3): 794- 805. | 
																													
																							| 13 | 王东, 陈志, 岳文静, 等. 基于显式与隐式反馈信息的概率矩阵分解推荐. 计算机应用, 2015, 35(9): 2574-2578, 2601. | 
																													
																							|  | WANG D, CHEN Z, YUE W J, et al. Probabilistic matrix factorization recommendation with explicit and implicit feedback. Journal of Computer Applications, 2015, 35(9): 2574-2578, 2601. | 
																													
																							| 14 | LIU N N, XIANG E W, ZHAO M, et al. Unifying explicit and implicit feedback for collaborative filtering[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2010: 1445-1448. | 
																													
																							| 15 | XIE R B, LING C, WANG Y L, et al. Deep feedback network for recommendation[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2020: 2519-2525. | 
																													
																							| 16 | WU C H, WU F Z, QI T, et al. FeedRec: news feed recommendation with various user feedbacks[C]//Proceedings of ACM Web Conference. New York, USA: ACM Press, 2022: 2088-2097. | 
																													
																							| 17 | 邢玉莹, 夏鸿斌, 王涵. 缺失数据建模的改进型ALS在线推荐算法. 计算机工程, 2018, 44(8): 212-217, 223.  URL
 | 
																													
																							|  | XING Y Y, XIA H B, WANG H. Improved ALS online recommendation algorithm with missing data modeling. Computer Engineering, 2018, 44(8): 212-217, 223.  URL
 | 
																													
																							| 18 |  | 
																													
																							| 19 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of NIPS'17. Cambridge, USA: MIT Press, 2017: 30-38. | 
																													
																							| 20 | PI Q, ZHOU G, ZHANG Y, et al. Search-based user interest modeling with lifelong sequenti-al behavior data for click-through rate prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 2685-2692. | 
																													
																							| 21 | GU Y L, DING Z Y, WANG S Q, et al. Deep multifaceted transformers for multi-objective ranking in large-scale E-commerce recommender systems[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 2493-2500. | 
																													
																							| 22 | ZHAO Z, HONG L C, WEI L, et al. Recommending what video to watch next: a multitask ranking system[C]//Proceedings of the 13th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2019: 43-51. | 
																													
																							| 23 | XIA L H, XU Y, HUANG C, et al. Graph meta network for multi-behavior recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 757-766. | 
																													
																							| 24 | SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 1441-1450. | 
																													
																							| 25 | XIE X, SUN F, LIU Z Y, et al. Contrastive learning for sequential recommendation[C]//Proceedings of the 38th IEEE International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2022: 1259-1273. | 
																													
																							| 26 | QIU R H, HUANG Z, YIN H Z, et al. Contrastive learning for representation degeneration problem in sequential recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 813-823. | 
																													
																							| 27 | 高萍, 杨宇晓. 基于三层加权分数阶傅里叶变换的安全通信系统. 电讯技术, 2022, 62(11): 1622- 1628. | 
																													
																							|  | GAO P, YANG Y X. A safe communication system based on three-layer weighted fractional Fourier transform. Telecommunication Engineering, 2022, 62(11): 1622- 1628. | 
																													
																							| 28 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778. | 
																													
																							| 29 | GUO H F, TANG R M, YE Y M, et al. DeepFM: a factorization-machine based neural network for CTR prediction[EB/OL]. [2023-08-20]. http://arxvi.org/abs/1703.04247 . | 
																													
																							| 30 | WANG R X, SHIVANNA R, CHENG D, et al. DCN V2: improved deep & cross network and practical lessons for web-scale learning to rank systems[C]//Proceedings of Web Conference. New York, USA: ACM Press, 2021: 1785-797. | 
																													
																							| 31 | SONG W, SHI C, XIAO Z, et al. Autoint: automatic feature interaction learning via self-at-tentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 1161-1170. | 
																													
																							| 32 | HUANG T W, ZHANG Z Q, ZHANG J L. FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction[C]//Proceedings of the 13th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2019: 169-177. | 
																													
																							| 33 | BIAN Z, ZHOU S J, FU H, et al. Denoising user-aware memory network for recommendation[C]//Proceedings of the 15th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2021: 400-410. |