1 |
LIES T. Clues to deceit in the marketplace, politics, and marriage[M]. New York, USA: [s. n. ], 1992.
|
2 |
EKMAN P , FRIESEN W V . Constants across cultures in the face and emotion. PLoS One, 1971, 17 (2): 124- 129.
doi: 10.1037/h0030377
|
3 |
FERRETTI V , PAPALEO F . Understanding others: emotion recognition in humans and other animals. Genes, Brain and Behavior, 2019, 18 (1): e12544.
doi: 10.1111/gbb.12544
|
4 |
GOTTMAN J M , LEVENSON R W . A two-factor model for predicting when a couple will divorce: exploratory analyses using 14-year longitudinal data. Family Process, 2002, 41 (1): 83- 96.
doi: 10.1111/j.1545-5300.2002.40102000083.x
|
5 |
SALTER F , GRAMMER K , RIKOWSKI A . Sex differences in negotiating with powerful males: an ethological analysis of approaches to nightclub doormen. Human Nature (Hawthorne, N Y), 2005, 16 (3): 306- 321.
doi: 10.1007/s12110-005-1013-4
|
6 |
陈庄, 赵源, 罗颂, 等. 双通道动静态特征的微表情识别. 小型微型计算机系统, 2023, 44 (7): 1500- 1507.
|
|
CHEN Z , ZHAO Y , LUO S , et al. Micro-expression recognition based on dynamic and static features of two channels. Journal of Chinese Computer Systems, 2023, 44 (7): 1500- 1507.
|
7 |
PORTER S , TEN BRINKE L . Reading between the lies: identifying concealed and falsified emotions in universal facial expressions. Psychological Science, 2008, 19 (5): 508- 514.
doi: 10.1111/j.1467-9280.2008.02116.x
|
8 |
LU Y , WANG S G , ZHAO W T , et al. WGAN-based robust occluded facial expression recognition. IEEE Access, 2019, 7, 93594- 93610.
doi: 10.1109/ACCESS.2019.2928125
|
9 |
|
10 |
POUX D , ALLAERT B , IHADDADENE N , et al. Dynamic facial expression recognition under partial occlusion with optical flow reconstruction. IEEE Transactions on Image Processing, 2022, 31, 446- 457.
doi: 10.1109/TIP.2021.3129120
|
11 |
|
12 |
SAXENA D , CAO J N . Generative Adversarial Networks (GANs): challenges, solutions, and future directions. ACM Computing Surveys, 2021, 54 (3): 1- 42.
|
13 |
LIU S S, ZHANG Y, LIU K P, et al. Facial expression recognition under partial occlusion based on Gabor multi-orientation features fusion and local Gabor binary pattern histogram sequence[C]//Proceedings of the 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Washington D.C., USA: IEEE Press, 2013: 218-222.
|
14 |
ZHANG L G , TJONDRONEGORO D , CHANDRAN V . Random Gabor based templates for facial expression recognition in images with facial occlusion. Neurocomputing, 2014, 145, 451- 464.
doi: 10.1016/j.neucom.2014.05.008
|
15 |
|
16 |
LI Y, ZENG J B, SHAN S G, et al. Patch-gated CNN for occlusion-aware facial expression recognition[C]//Proceedings of the 24th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 2209-2214.
|
17 |
DING H, ZHOU P, CHELLAPPA R, et al. Occlusion-adaptive deep network for robust facial expression recognition[C]//Proceedings of the 2020 IEEE International Joint Conference on Biometrics. New York, USA: ACM Press, 2020: 1-9.
|
18 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-09-05]. https://arxiv.org/abs/2010.11929.
|
19 |
FARZANEH A H, QI X J. Facial expression recognition in the wild via deep attentive center loss[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Washington D.C., USA: IEEE Press, 2021: 2402-2411.
|
20 |
李晶, 李健, 陈海丰, 等. 基于关键区域遮挡与重建的人脸表情识别. 计算机工程, 2024, 50 (5): 241- 249.
doi: 10.19678/j.issn.1000-3428.0067538
|
|
LI J , LI J , CHEN H F , et al. Facial expression recognition based on key region masking and reconstruction. Computer Engineering, 2024, 50 (5): 241- 249.
doi: 10.19678/j.issn.1000-3428.0067538
|
21 |
MA F Y , SUN B , LI S T . Facial expression recognition with visual transformers and attentional selective fusion. IEEE Transactions on Affective Computing, 2023, 14 (2): 1236- 1248.
doi: 10.1109/TAFFC.2021.3122146
|
22 |
GAO J , ZHAO Y . TFE: a transformer architecture for occlusion aware facial expression recognition. Frontiers in Neurorobotics, 2021, 15, 763100.
doi: 10.3389/fnbot.2021.763100
|
23 |
LIU C , HIROTA K , DAI Y P . Patch attention convolutional vision transformer for facial expression recognition with occlusion. Information Sciences, 2023, 619, 781- 794.
doi: 10.1016/j.ins.2022.11.068
|
24 |
|
25 |
ZHENG C, MENDIETA M, CHEN C. POSTER: a pyramid cross-fusion transformer network for facial expression recognition[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 3146-3155.
|
26 |
ZHANG L F , HONG X P , ARANDJELOVIC O , et al. Short and long range relation based spatio-temporal transformer for micro-expression recognition. IEEE Transactions on Affective Computing, 2022, 13 (4): 1973- 1985.
doi: 10.1109/TAFFC.2022.3213509
|
27 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
28 |
|
29 |
ZHAO Z Q , LIU Q S , WANG S M . Learning deep global multi-scale and local attention features for facial expression recognition in the wild. IEEE Transactions on Image Processing, 2021, 30, 6544- 6556.
doi: 10.1109/TIP.2021.3093397
|
30 |
GERA D , BALASUBRAMANIAN S . Landmark guidance independent spatio-channel attention and complementary context information based facial expression recognition. Pattern Recognition Letters, 2021, 145, 58- 66.
doi: 10.1016/j.patrec.2021.01.029
|
31 |
WEN Z , LIN W , WANG T , et al. Distract your attention: multi-head cross attention network for facial expression recognition. Biomimetics (Basel, Switzerland), 2023, 8 (2): 199.
doi: 10.3390/biomimetics8020199
|
32 |
|
33 |
LIN J C, WU C H, WEI W L. Facial action unit prediction under partial occlusion based on error weighted cross-correlation model[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D.C., USA: IEEE Press, 2013: 3482-3486.
|
34 |
|
35 |
MAO X, XUE Y L, LI Z, et al. Robust facial expression recognition based on RPCA and AdaBoost[C]//Proceedings of the 10th Workshop on Image Analysis for Multimedia Interactive Services. Washington D.C., USA: IEEE Press, 2009: 113-116.
|
36 |
|
37 |
JIANG M Y, WANG Y W, MCKEOWN M J, et al. Occlusion-robust FAU recognition by mining latent space of masked autoencoders[EB/OL]. [2023-09-05]. https://arxiv.org/abs/2212.04029v1.
|
38 |
杨鲁月, 张树美, 赵俊莉. 基于并行Gan的有遮挡动态表情识别. 计算机工程与应用, 2021, 57 (24): 168- 178.
|
|
YANG L Y , ZHANG S M , ZHAO J L . Dynamic expression recognition with partial occlusion based on parallel Gan. Computer Engineering and Applications, 2021, 57 (24): 168- 178.
|
39 |
MA B W, AN R D, ZHANG W, et al. Facial action unit detection and intensity estimation from self-supervised representation[EB/OL]. [2023-09-05]. https://arxiv.org/abs/2210.15878v1.
|
40 |
王海涌, 梁红珠. 基于改进的GAN的局部遮挡人脸表情识别. 计算机工程与应用, 2020, 56 (5): 141- 146.
|
|
WANG H Y , LIANG H Z . Recognition of local occluded facial expressions based on improved generative adversarial network. Computer Engineering and Applications, 2020, 56 (5): 141- 146.
|
41 |
YAN W J, WU Q, LIU Y J, et al. CASME database: a dataset of spontaneous micro-expressions collected from neutralized faces[C]//Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Washington D.C., USA: IEEE Press, 2013: 1-7.
|
42 |
QU F B , WANG S J , YAN W J , et al. CAS(ME)2: a database for spontaneous macro-expression and micro-expression spotting and recognition. IEEE Transactions on Affective Computing, 2017, 9 (4): 424- 436.
|
43 |
LI X B, PFISTER T, HUANG X H, et al. A spontaneous micro-expression database: inducement, collection and baseline[C]//Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Washington D.C., USA: IEEE Press, 2013: 1-6.
|
44 |
|
45 |
|
46 |
BILEN H, FERNANDO B, GAVVES E, et al. Dynamic image networks for action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 3034-3042.
|
47 |
GARBACEA C, VAN DEN OORD A, LI Y Z, et al. Low bit-rate speech coding with VQ-VAE and a WaveNet decoder[C]//Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D.C., USA: IEEE Press, 2019: 735-739.
|
48 |
|
49 |
VAN DEN OORD A, VINYALS O, KAVUKCUOGLU K, et al. Neural discrete representation learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6309-6318.
|
50 |
VAN DEN OORD A, KALCHBRENNER N, KAVUKCUOGLU K, et al. Pixel recurrent neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM Press, 2016: 1747-1756.
|
51 |
|
52 |
|
53 |
|
54 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
|
55 |
|
56 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 2818-2826.
|
57 |
ZHAO G , PIETIKÄINEN M . Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (6): 915- 928.
|
58 |
CHAUDHRY R, RAVICHANDRAN A, HAGER G, et al. Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2009: 1932-1939.
|
59 |
LIONG S T , SEE J , WONG K , et al. Less is more: micro-expression recognition from video using Apex frame. Signal Processing: Image Communication, 2018, 62, 82- 92.
doi: 10.1016/j.image.2017.11.006
|
60 |
LIU Y J , ZHANG J K , YAN W J , et al. A main directional mean optical flow feature for spontaneous micro-expression recognition. IEEE Transactions on Affective Computing, 2016, 7 (4): 299- 310.
|