1 |
|
2 |
ZHANG C , BENZ P , KARJAUV A , et al. UDH: universal deep hiding for steganography, watermarking, and light field messaging. Advances in Neural Information Processing Systems, 2020, 33, 10223- 10234.
|
3 |
AHMADI M , NOROUZI A , KARIMI N , et al. ReDMark: framework for residual diffusion watermarking based on deep networks. Expert Systems with Applications, 2020, 146, 113157.
doi: 10.1016/j.eswa.2019.113157
|
4 |
LIU Y, GUO M X, ZHANG J, et al. A novel two-stage separable deep learning framework for practical blind watermarking[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 1509-1517.
|
5 |
LUO X Y, ZHAN R H, CHANG H W, et al. Distortion agnostic deep watermarking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 13548-13557.
|
6 |
FAN B , LI Z , GAO J . DwiMark: a multiscale robust deep watermarking framework for diffusion-weighted imaging images. Multimedia Systems, 2022, 28 (1): 295- 310.
doi: 10.1007/s00530-021-00835-0
|
7 |
LI Q , WANG X Y , MA B , et al. Concealed attack for robust watermarking based on generative model and perceptual loss. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32 (8): 5695- 5706.
|
8 |
YU C . Attention based data hiding with generative adversarial networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (1): 1120- 1128.
doi: 10.1609/aaai.v34i01.5463
|
9 |
LIU C M , LI Z , WANG G M , et al. A robust tensor watermarking algorithm for diffusion-tensor images. Frontiers of Information Technology & Electronic Engineering, 2024, 25 (3): 384- 397.
|
10 |
ZHENG L , LI Z , LUO R W , et al. VSTNet: Robust watermarking scheme based on voxel space transformation for diffusion tensor imaging images. Journal of Information Security and Applications, 2023, 79, 103657.
doi: 10.1016/j.jisa.2023.103657
|
11 |
FRIDRICH J , GOLJAN M , DU R . Lossless data embedding—new paradigm in digital watermarking. EURASIP Journal on Advances in Signal Processing, 2002 (2): 986842.
doi: 10.1155/S1110865702000537
|
12 |
COLTUC D . Towards distortion-free robust image authentication. Journal of Physics: Conference Series, 2007, 77, 012005.
doi: 10.1088/1742-6596/77/1/012005
|
13 |
HU R W , XIANG S J . Lossless robust image watermarking by using polar harmonic transform. Signal Processing, 2021, 179, 107833.
doi: 10.1016/j.sigpro.2020.107833
|
14 |
HU R , XIANG S . Cover-lossless robust image watermarking against geometric deformations. IEEE Transactions on Image Processing, 2021, 30, 318- 331.
doi: 10.1109/TIP.2020.3036727
|
15 |
STEJSKAL E O , TANNER J E . Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. The Journal of Chemical Physics, 1965, 42 (1): 288- 292.
doi: 10.1063/1.1695690
|
16 |
STEJSKAL E O . Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. The Journal of Chemical Physics, 1965, 42 (10): 3597- 3603.
|
17 |
|
18 |
张天骐, 闻斌, 熊天, 等. 基于张量分解与场景分割的鲁棒视频水印算法. 计算机工程, 2023, 49 (8): 250-256, 264.
doi: 10.19678/j.issn.1000-3428.0065004
|
|
ZHANG T Q , WEN B , XIONG T , et al. Robust video watermarking algorithm based on tensor decomposition and scene segmentation. Computer Engineering, 2023, 49 (8): 250-256, 264.
doi: 10.19678/j.issn.1000-3428.0065004
|
19 |
郑秋梅, 赵丹, 牛薇薇, 等. 基于多通道的彩色图像多重水印算法. 计算机工程, 2024, 50 (9): 246- 254.
doi: 10.19678/j.issn.1000-3428.0068410
|
|
ZHENG Q M , ZHAO D , NIU W W , et al. Multiple watermarking algorithm for color images based on multi-channel. Computer Engineering, 2024, 50 (9): 246- 254.
doi: 10.19678/j.issn.1000-3428.0068410
|
20 |
王楠, 李智, 程欣宇, 等. 基于均值比例与压缩感知的视频双水印算法. 计算机工程, 2019, 45 (3): 250-255, 261.
doi: 10.19678/j.issn.1000-3428.0052206
|
|
WANG N , LI Z , CHENG X Y , et al. Video dual watermarking algorithm based on mean ratio and compressive sensing. Computer Engineering, 2019, 45 (3): 250-255, 261.
doi: 10.19678/j.issn.1000-3428.0052206
|
21 |
PENNEC X , FILLARD P , AYACHE N . A Riemannian framework for tensor computing. International Journal of Computer Vision, 2006, 66 (1): 41- 66.
doi: 10.1007/S11263-005-3222-Z
|
22 |
ARSIGNY V , FILLARD P , PENNEC X , et al. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 2006, 56 (2): 411- 421.
doi: 10.1002/mrm.20965
|
23 |
ZHOU B, ZHOU S K. DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 4273-4282.
|
24 |
TIAN J . Reversible data embedding using a difference expansion. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13 (8): 890- 896.
|
25 |
|
26 |
SOTIROPOULOS S N , JBABDI S , XU J Q , et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage, 2013, 80, 125- 143.
doi: 10.1016/j.neuroimage.2013.05.057
|
27 |
GARYFALLIDIS E , BRETT M , AMIRBEKIAN B , et al. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 2014, 8, 8.
|
28 |
RAJAGOPALAN V , JIANG Z G , YUE G H , et al. A basic introduction to diffusion tensor imaging mathematics and image processing steps. Brain Disorders & Therapy, 2017, 6 (2): 2.
doi: 10.4172/2168-975X.1000229
|
29 |
LI H , LIANG Z , ZHANG C , et al. SuperDTI: ultrafast DTI and fiber tractography with deep learning. Magnetic Resonance in Medicine, 2021, 86 (6): 3334- 3347.
|