Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (5): 305-313. doi: 10.19678/j.issn.1000-3428.0068894

• Graphics and Image Processing • Previous Articles     Next Articles

Remote Sensing Image Retrieval Based on Class Center Optimization Added Triplet Loss

ZHENG Zongsheng1, HUO Zhijun1,*(), GAO Meng1, WANG Zhenghan1, ZHOU Wenhuan1, ZHANG Yuewei2   

  1. 1. School of Information, Shanghai Ocean University, Shanghai 201306, China
    2. Guangzhou Meteorological Satellite Ground Station, Guangzhou 510650, Guangdong, China
  • Received:2023-11-22 Online:2025-05-15 Published:2024-06-06
  • Contact: HUO Zhijun

基于类中心优化辅助三元组损失的遥感图像检索

郑宗生1, 霍志俊1,*(), 高萌1, 王政翰1, 周文睆1, 张月维2   

  1. 1. 上海海洋大学信息学院, 上海 201306
    2. 广州气象卫星地面站, 广东 广州 510650
  • 通讯作者: 霍志俊
  • 基金资助:
    国家自然科学基金(41671431); 上海市科委地方能力建设项目(19050502100); 广州气象卫星地面站项目(D-8006-23-0157)

Abstract:

The key to remote sensing image retrieval is to efficiently and accurately retrieve target samples from massive images. Intraclass samples in remote sensing images are dispersed and exhibit large variance. Traditional remote sensing image retrieval based on limited samples cannot effectively learn the differences between intraclass samples. The existing Cross-Batch Memory (XBM) method has triplet pairing redundancy and complex computations. A remote sensing image retrieval method based on Class Center Optimization added for Triplet Loss (CCO-TL) is proposed to address these problems. CCO-TL uses class center features to limit the distance between positive samples within a class, assisting in optimizing the triplet loss and achieving interclass separation. Simultaneously, samples within a class are clustered and compacted, generating optimized sample features. By improving the XBM module, a Batch Feature Queue (BFQ) is obtained to store the feature vectors of previous training batches, and by changing the triplet pairing method, sample information is mined fully, data redundancy problems are solved, and the training time is reduced. Simultaneously, the BFQ module is used for the real-time calculation of class center point features, replacing the estimated values of traditional methods with calculated values. Experimental results show that the network model trained with the triplet loss function based on real class center feature assisted optimization has a stronger learning ability between samples, more intraclass clustering, and more obvious interclass differentiation. The proposed method is evaluated in terms of the Recall@K metric on four remote sensing datasets. The proposed method achieves accuracies of 93.1%, 87.2%, 97.1%, and 82.2%, on the UCMD, AID, PN, and OP datasets, respectively, outperforming other methods.

Key words: image retrieval, deep metric learning, triplet loss, class center, batch

摘要:

遥感图像检索的关键是从海量图像中高效、准确地检索出目标样本。遥感图像类内样本分散、方差大, 依靠有限样本的传统遥感图像检索不能很好地学习类内样本差异特征, 现有的跨批处理内存(XBM)方法的三元组配对冗余、计算复杂。针对这些问题, 提出一种基于类中心优化辅助的三元组损失(CCO-TL)的遥感图像检索方法。CCO-TL使用类中心特征限制类内正样本之间的距离以辅助优化三元组损失, 实现类间相互分离, 同时类内的样本更加聚集紧凑, 得到优化的样本特征; 通过改进XBM模块得到批次特征队列(BFQ), 用于存储先前训练批次的特征向量, 通过改变三元组配对方式, 充分挖掘样本信息并解决数据冗余问题, 减少训练时间。同时使用BFQ模块进行类中心点特征的实时计算, 用计算值取代传统方法的估计值。实验结果表明, 基于真实类中心特征辅助优化的三元组损失函数训练的网络模型学习样本间的能力更强, 类内更加聚集, 类间区分也更明显。最后结合Recall@K等指标进行评估, 在UCMD、AID、PN、OP 4个遥感数据集上进行实验, 所提算法的精度分别达到93.1%、87.2%、97.1%、82.2%, 优于其他研究方法。

关键词: 图像检索, 深度度量学习, 三元组损失, 类中心, 批次