1 |
冯孝鑫, 王子健, 吴奇. 基于三元采样图卷积网络的半监督遥感图像检索. 电子与信息学报, 2023, 45 (2): 644- 653.
|
|
FENG X X , WANG Z J , WU Q . Semi-supervised learning remote sensing image retrieval method based on triplet sampling graph convolutional network. Journal of Electronics & Information Technology, 2023, 45 (2): 644- 653.
|
2 |
WANG Y, ALBRECHT C M, BRAHAM N A A, et al. Self-supervised learning in remote sensing: a review[EB/OL]. (2022-09-02)[2023-10-22]. https://arxiv.org/pdf/2206.13188.
|
3 |
XIAO Y , YUAN Q , JIANG K , et al. From degrade to upgrade: learning a self-supervised degradation guided adaptive network for blind remote sensing image super-resolution. Information Fusion, 2023, 96, 297- 311.
doi: 10.1016/j.inffus.2023.03.021
|
4 |
STOJNIC V, RISOJEVIC V. Self-supervised learning of remote sensing scene representations using contrastive multiview coding[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 1182-1191.
|
5 |
CHEN X, PAN J, JIANG K, et al. Unpaired deep image deraining using dual contrastive learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 2017-2026.
|
6 |
CHENG Q , GAN D , FU P , et al. A novel ensemble architecture of residual attention-based deep metric learning for remote sensing image retrieval. Remote Sensing, 2021, 13 (17): 3445.
doi: 10.3390/rs13173445
|
7 |
ZHANG B , CHEN Z , PENG D , et al. Remotely sensed big data: evolution in model development for information extraction[point of view]. Proceedings of the IEEE, 2019, 107 (12): 2294- 2301.
doi: 10.1109/JPROC.2019.2948454
|
8 |
XIAO Y , YUAN Q , JIANG K , et al. TTST: a top-k token selective transformer for remote sensing image super-resolution. IEEE Transactions on Image Processing, 2024, 33, 738- 752.
doi: 10.1109/TIP.2023.3349004
|
9 |
梁天佑, 孟敏, 武继刚. 基于特征融合的无监督跨模态哈希. 计算机工程, 2023, 49 (2): 90- 97.
doi: 10.19678/j.issn.1000-3428.0063841
|
|
LIANG T Y , MENG M , WU J G . Unsupervised cross-modal hashing based on feature fusion. Computer Engineering, 2023, 49 (2): 90- 97.
doi: 10.19678/j.issn.1000-3428.0063841
|
10 |
彭晏飞, 梅金业, 王恺欣, 等. 基于区域注意力机制的遥感图像检索. 激光与光电子学进展, 2020, 57 (10): 101017.
|
|
PENG Y F , MEI J Y , WANG K X , et al. Remote sensing image retrieval based on regional attention mechanism. Laser & Optoelectronics Progress, 2020, 57 (10): 101017.
|
11 |
黄娜, 何泾沙. 基于深度特征与局部特征融合的图像检索. 北京工业大学学报, 2020, 46 (12): 1345- 1354.
doi: 10.11936/bjutxb2019070005
|
|
HUANG N , HE J S . Image retrieval based on fusion of deep feature and local feature. Journal of Beijing University of Technology, 2020, 46 (12): 1345- 1354.
doi: 10.11936/bjutxb2019070005
|
12 |
吴刚, 葛芸, 储珺, 等. 面向遥感图像检索的级联池化自注意力研究. 光电工程, 2022, 49 (12): 220029.
|
|
WU G , GE Y , CHU J , et al. Cascade pooling self-attention research for remote sensing image retrieval. Opto-Electronic Engineering, 2022, 49 (12): 220029.
|
13 |
金柱璋, 方旭源, 黄彦慧, 等. 基于深度度量学习的卫星云图检索. 光电工程, 2022, 49 (4): 210307.
|
|
JIN Z Z , FANG X Y , HUANG Y H , et al. Satellite cloud image retrieval based on deep metric learning. Opto-Electronic Engineering, 2022, 49 (4): 210307.
|
14 |
WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of Computer Vision-ECCV 2016: 14th European Conference. Berlin, Germany: Springer, 2016: 499-515.
|
15 |
|
16 |
HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2006: 1735-1742.
|
17 |
SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: a unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 815-823.
|
18 |
SOHN K. Improved deep metric learning with multi-class N-pair loss objective[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2016: 1857-1865.
|
19 |
|
20 |
LIU C, YU H, LI B, et al. Noise-resistant deep metric learning with ranking-based instance selection[EB/OL]. (2021-04-12)[2023-10-22]. https://arxiv.org/abs/2103.16047.
|
21 |
LI X , WEI S , WANG J , et al. Adaptive multi-proxy for remote sensing image retrieval. Remote Sensing, 2022, 14 (21): 5615.
doi: 10.3390/rs14215615
|
22 |
GU G, KO B. Symmetrical synthesis for deep metric learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2020: 10853-10860.
|
23 |
WANG X, HAN X, HUANG W, et al. Multi-similarity loss with general pair weighting for deep metric learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5022-5030.
|
24 |
QIAN Q, SHANG L, SUN B, et al. Softtriple loss: deep metric learning without triplet sampling[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 6450-6458.
|
25 |
|
26 |
YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, USA: ACM, 2010: 270-279.
|
27 |
XIA G S , HU J , HU F , et al. AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (7): 3965- 3981.
doi: 10.1109/TGRS.2017.2685945
|
28 |
ZHOU W , NEWSAM S , LI C , et al. PatternNet: a benchmark dataset for performance evaluation of remote sensing image retrieval. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 197- 209.
doi: 10.1016/j.isprsjprs.2018.01.004
|
29 |
WANG Q , LIU S , CHANUSSOT J , et al. Scene classification with recurrent attention of VHR remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57 (2): 1155- 1167.
|