1 |
MCALLISTER S S, WEINBERG R A. Tumor-host interactions: a far-reaching relationship. Journal of Clinical Oncology, 2010, 28(26): 4022- 4028.
doi: 10.1200/JCO.2010.28.4257
|
2 |
SONG A H, JAUME G, WILLIAMSON D F, et al. Artificial intelligence for digital and computational pathology. Nature Reviews Bioengineering, 2023, 1, 930- 949.
doi: 10.1038/s44222-023-00096-8
|
3 |
DUGGENTO A, CONTI A, MAURIELLO A, et al. Deep computational pathology in breast cancer. Seminars in Cancer Biology, 2021, 72(1): 226- 237.
|
4 |
SRINIDHI C L, CIGA O, MARTEL A L. Deep neural network models for computational histopathology: a survey. Medical Image Analysis, 2021, 67, 101813.
doi: 10.1016/j.media.2020.101813
|
5 |
DURAN-LOPEZ L, DOMINGUEZ-MORALES J P, CONDE-MARTIN A F, et al. PROMETEO: a CNN-based computer-aided diagnosis system for WSI prostate cancer detection. IEEE Access, 2020, 8, 128613- 128628.
doi: 10.1109/ACCESS.2020.3008868
|
6 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84- 90.
doi: 10.1145/3065386
|
7 |
CIRESAN D C, GIUSTI A, GAMBARDELLA L, et al. Deep neural networks segment neuronal membranes in electron microscopy images[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2012, 2: 2843-2851.
|
8 |
张喜科, 马志庆, 赵文华, 等. 基于卷积神经网络的乳腺癌组织病理学图像分类研究综述. 计算机科学, 2022, 49(S2): 362- 370.
|
|
Zhang X K, MA Z Q, ZHAO W H, et al. Review on classification of breast cancer histopathological images based on convolutional neural network. Computer Science, 2022, 49(S2): 362- 370.
|
9 |
NGUYEN C, ASAD Z, DENG R, et al. Evaluating transformer-based semantic segmentation networks for pathological image segmentation[C]//Proceedings of the Medical Imaging 2022: Image Processing. Bellingham, USA: SPIE, 2022: 942-947.
|
10 |
LI H, YANG F, ZHAO Y, et al. DT-MIL: deformable transformer for multi-instance learning on histopathological image[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham, Switzerland: Springer, 2021: 206-216.
|
11 |
SHAO Z C, BIAN H, CHEN Y, et al. Transmil: transformer based correlated multiple instance learning for whole slide image classification[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2021: 2136-2147.
|
12 |
LEVY J, HAUDENSCHILD C, BARWICK C, et al. Topological feature extraction and visualization of whole slide images using graph neural networks[C]//Proceedings of the Pacific Symposium on Biocomputing 2021. Singapore, Singapore: World Scientific, 2020: 285-296.
|
13 |
PATI P, JAUME G, FONCUBIERTA-RODRIGUEZ A, et al. Hierarchical graph representations in digital pathology. Medical Image Analysis, 2022, 75, 102264.
doi: 10.1016/j.media.2021.102264
|
14 |
陈思硕, 王晓东, 刘西洋. 基于图神经网络的乳腺癌病理图像分析方法综述. 计算机科学, 2024, 2(1): 172- 185.
|
|
CHEN S S, WANG X D, LIU X Y. A survey on pathological image analysis methods based on graph neural networks. Computer Science, 2024, 2(1): 172- 185.
|
15 |
EPPSTEIN D, PATERSON M S, YAO F F. On nearest-neighbor graphs. Discrete & Computational Geometry, 1997, 17(1): 263- 282.
|
16 |
CORREDOR G, WANG X, ZHOU Y, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clinical Cancer Research, 2019, 25(5): 1526- 1534.
doi: 10.1158/1078-0432.CCR-18-2013
|
17 |
CORREDOR G, TORO P, KOYUNCU C, et al. An imaging biomarker of tumor-infiltrating lymphocytes to risk-stratify patients with HPV-associated oropharyngeal cancer. Journal of the National Cancer Institute, 2022, 114(4): 609- 617.
doi: 10.1093/jnci/djab215
|
18 |
WANG X, BARRERA C, BERA K, et al. Spatial interplay patterns of cancer nuclei and tumor-infiltrating lymphocytes (TILs) predict clinical benefit for immune checkpoint inhibitors. Science Advances, 2022, 8(22): eabn3966.
doi: 10.1126/sciadv.abn3966
|
19 |
HOU W, HUANG H, PENG Q, et al. Spatial-hierarchical graph neural network with dynamic structure learning for histological image classification[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham, Switzerland: Springer, 2022: 181-191.
|
20 |
CHENG J, MO X, WANG X, et al. Identification of topological features in renal tumor microenvironment associated with patient survival. Bioinformatics, 2018, 34(6): 1024- 1030.
doi: 10.1093/bioinformatics/btx723
|
21 |
ZENG H, ZHANG M, XIA Y, et al. Decoupling the depth and scope of graph neural networks[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2024, 1504: 19665-19679.
|
22 |
ZENG H, ZHOU H, SRIVASTAVA A, et al. GraphSAINT: graph sampling based inductive learning method[C]//Proceedings of the International Conference on Learning Representations. Appleton, USA: OpenReview. net, 2020: 1-19.
|
23 |
ZHOU Y, GRAHAM S, ALEMI KOOHBANANI N, et al. CGC-Net: cell graph convolutional network for grading of colorectal cancer histology images[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. New York, USA: IEEE Press, 2019: 388-398.
|
24 |
LU W, GRAHAM S, BILAL M, et al. Capturing cellular topology in multi-gigapixel pathology images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York, USA: IEEE Press, 2020: 260-261.
|
25 |
LEE Y, PARK J H, OH S, et al. Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning. Nature Biomedical Engineering, 2022, 6(12): 1323- 1325.
doi: 10.1038/s41551-022-00924-z
|
26 |
BAEK J, KANG M, HWANG S J. Accurate learning of graph representations with graph multiset pooling[C]//Proceedings of the International Conference on Learning Representations. Appleton, USA: OpenReview. net, 2021: 1-22.
|
27 |
满芮, 杨萍, 季程雨, 等. 乳腺癌组织病理学图像分类方法研究综述. 计算机科学, 2020, 47(S2): 145- 150.
|
|
Man R, Yang P, JI C Y, et al. Survey of classification methods of breast cancer histopathological images. Computer Science, 2020, 47(S2): 145- 150.
|
28 |
LU M Y, WILLIAMSON D F, CHEN T Y, et al. Data-efficient and weakly supervised computational pathology on whole-slide images. Nature Biomedical Engineering, 2021, 5(6): 555- 570.
doi: 10.1038/s41551-020-00682-w
|
29 |
AHMEDT-ARISTIZABAL D, ARMIN M A, DENMAN S, et al. A survey on graph-based deep learning for computational histopathology. Computerized Medical Imaging and Graphics, 2022, 95, 102027.
doi: 10.1016/j.compmedimag.2021.102027
|
30 |
WANG J, CHEN R J, LU M Y, et al. Weakly supervised prostate tma classification via graph convolutional networks[C]//Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). New York, USA: IEEE Press, 2020: 239-243.
|
31 |
|
32 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE Press, 2016: 770-778.
|
33 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE Press, 2017: 4700-4708.
|
34 |
RIASATIAN A, BABAIE M, MALEKI D, et al. Fine-tuning and training of densenet for histopathology image representation using tcga diagnostic slides. Medical Image Analysis, 2021, 70, 102032.
doi: 10.1016/j.media.2021.102032
|
35 |
石静文, 李嘉. 乳腺癌病理图像特征提取方法研究综述. 机电工程技术, 2022, 51(4): 16- 19.
|
|
SHI J W, Li J. Survey on feature extraction methods of breast cancer histopathology. Mechanical & Electrical Engineering Technology, 2022, 51(4): 16- 19.
|
36 |
KLEIN D. Centrality measure in graphs. Journal of Mathematical Chemistry, 2010, 47(4): 1209- 1223.
doi: 10.1007/s10910-009-9635-0
|
37 |
JIMENEZ-SANCHEZ D, ARIZ M, CHANG H, et al. NaroNet: discovery of tumor microenvironment elements from highly multiplexed images. Medical Image Analysis, 2022, 78, 102384.
doi: 10.1016/j.media.2022.102384
|
38 |
ZHOU J, CUI G, HU S, et al. Graph neural networks: a review of methods and applications. AI Open, 2020, 1, 57- 81.
doi: 10.1016/j.aiopen.2021.01.001
|
39 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2017: 1025-1035.
|
40 |
NIU Z, ZHONG G, YU H. A review on the attention mechanism of deep learning. Neurocomputing, 2021, 452(1): 48- 62.
|
41 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2017: 6000-6010.
|
42 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C]//Proceedings of the International Conference on Learning Representations. Appleton, USA: openreview. net, 2021: 1-22.
|
43 |
SHI Y, HUANG Z, FENG S, et al. Masked label prediction: unified message passing model for semi-supervised classification[C]//Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. S. l. : International Joint Conferences on Artificial Intelligence, 2021: 1548-1554.
|
44 |
|
45 |
ZHOU X, WU O. Drop "noise" edge: an approximation of the Bayesian GNNs[C]//Proceedings of the Asian Conference on Pattern Recognition. Cham, Switzerland: Springer, 2021: 59-72.
|
46 |
CIGA O, XU T, MARTEL A L. Self supervised contrastive learning for digital histopathology. Machine Learning with Applications, 2022, 7, 100198.
doi: 10.1016/j.mlwa.2021.100198
|
47 |
CHEN R J, LU M Y, SHABAN M, et al. Whole slide images are 2D point clouds: context-aware survival prediction using patch-based graph convolutional networks[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham, Switzerland: Springer, 2021: 339-349.
|
48 |
HAMMOND M E H, HAYES D F, DOWSETT M, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Archives of Pathology & Laboratory Medicine, 2010, 28(16): 2784- 2795.
|
49 |
WOLFF A C, HAMMOND M E H, ALLISON K H, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. Archives of Pathology & Laboratory Medicine, 2018, 142(11): 1364- 1382.
|
50 |
GRAHAM S, VU Q D, RAZA S E A, et al. Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Medical Image Analysis, 2019, 58, 101563.
doi: 10.1016/j.media.2019.101563
|
51 |
|