1 |
熊海芳. 量化投资分析在证券投资教学中的应用. 金融教学与研究, 2014 (2): 63- 66.
|
|
XIONG H F . The application of quantitative investment analysis in securities investment teaching. Exploration of Financial Theory, 2014 (2): 63- 66.
|
2 |
|
3 |
FENG F L , HE X N , WANG X , et al. Temporal relational ranking for stock prediction. ACM Transactions on Information Systems, 2019, 37 (2): 1- 30.
|
4 |
SAWHNEY R, AGARWAL S, WADHWA A, et al. Spatiotemporal hypergraph convolution network for stock movement forecasting[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2020: 482-491.
|
5 |
ZHAO Y , DU H M , LIU Y , et al. Stock movement prediction based on bi-typed hybrid-relational market knowledge graph via dual attention networks. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (8): 8559- 8571.
URL
|
6 |
HAMILTON J D , SUSMEL R . Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 1994, 64 (1/2): 307- 333.
URL
|
7 |
ROTELA P J , SALOMON F L R . ARIMA: an applied time series forecasting model for the BOVESPA stock index. Applied Mathematics, 2014, 5 (21): 3383- 3391.
doi: 10.4236/am.2014.521315
|
8 |
ZHANG L H, AGGARWAL C, QI G J. Stock price prediction via discovering multi-frequency trading patterns[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 1-7.
|
9 |
|
10 |
杨佳鹏. 基于注意力机制融合多特征的股票预测研究[D]. 北京: 北京交通大学, 2021.
|
|
YANG J P. Research on stock prediction based on attention mechanism fusion of multiple features[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese)
|
11 |
LIN T, GUO T, ABERER K. Hybrid neural networks for learning the trend in time series[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: International Joint Conferences on Artificial Intelligence Organization, 2017: 2273-2279.
|
12 |
CHEN C, ZHAO L, BIAN J, et al. Investment behaviors can tell what inside: exploring stock intrinsic properties for stock trend prediction[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 2376-2384.
|
13 |
QIN Y, YANG Y. What you say and how you say it matters: predicting stock volatility using verbal and vocal cues[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 1019-1038.
|
14 |
SEDINKINA M, BREITKOPF N, SCHVTZE H. Automatic domain adaptation outperforms manual domain adaptation for predicting financial outcomes[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 1014-1034.
|
15 |
YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for Web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2018: 974-983.
|
16 |
CHEN Y M, WEI Z Y, HUANG X J. Incorporating corporation relationship via graph convolutional neural networks for stock price prediction[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2018: 1655-1658.
|
17 |
LI W, BAO R H, HARIMOTO K, et al. Modeling the stock relation with graph network for overnight stock movement prediction[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama, Japan: International Joint Conferences on Artificial Intelligence Organization, 2020: 4541-4547.
|
18 |
KIM R, SO C H, JEONG M, et al. HATS: a hierarchical graph attention network for stock movement prediction[EB/OL]. [2023-12-07]. http://arxiv.org/abs/1908.07999.
|
19 |
HSU Y L , TSAI Y C , LI C T . FinGAT: financial graph attention networks for recommending top—profitable stocks. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (1): 469- 481.
URL
|
20 |
YE J X, ZHAO J J, YE K J, et al. Multi-graph convolutional network for relationship-driven stock movement prediction[C]//Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Washington D.C., USA: IEEE Press, 2021: 6702-6709.
|
21 |
MOODY J , SAFFELL M , LIAO Y S , et al. Reinforcement learning for trading systems and portfolios: immediate vs future rewards. Berlin, Germany: Springer, 1998.
|
22 |
MOODY J , WU L Z , LIAO Y S , et al. Performance functions and reinforcement learning for trading systems and portfolios. Journal of Forecasting, 1998, 17 (56): 441- 470.
doi: 10.1002/(SICI)1099-131X(1998090)17:5/6<441::AID-FOR707>3.0.CO;2-#
|
23 |
MOODY J , SAFFELL M . Learning to trade via direct reinforcement. IEEE Transactions on Neural Networks, 2001, 12 (4): 875- 889.
doi: 10.1109/72.935097
|
24 |
JIANG Z Y, XU D X, LIANG J J. A deep reinforcement learning framework for the financial portfolio management problem[EB/OL]. [2023-12-07]. https://arxiv.org/abs/1706.10059.
|
25 |
CHENG R, LI Q. Modeling the momentum spillover effect for stock prediction via attribute-driven graph attention networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 55-62.
|
26 |
|
27 |
|
28 |
|