Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (3): 122-130. doi: 10.19678/j.issn.1000-3428.0069277

• Artificial Intelligence and Pattern Recognition • Previous Articles     Next Articles

Strategy Teaching Research Based on Multilayer Graph Relationship and Reinforcement Learning

LI Siyuan, ZHONG Xingyu, LI Kaiyin, XU Qingzhen*()   

  1. School of Computer, South China Normal University, Guangzhou 510630, Guangdong, China
  • Received:2024-01-22 Online:2025-03-15 Published:2024-05-22
  • Contact: XU Qingzhen

基于多层图关系和强化学习的策略教学研究

李思源, 钟兴宇, 李凯茵, 徐清振*()   

  1. 华南师范大学计算机学院, 广东 广州 510630
  • 通讯作者: 徐清振
  • 基金资助:
    2023年广东省研究生教育创新计划研究生示范课程建设项目(2023SFKC_022); 2023年度广东省本科高校教学质量与教学改革工程项目(2024609)

Abstract:

Developments in educational informatization have provided additional schemes for promoting the diversification of teaching content. To enrich the connotation of the programmatic trading classroom, a new case- teaching method is proposed to discuss and study quantitative strategies. In stock trend forecasting, the prediction of a company's stock is affected by the multifaceted, invisible level of executive relationships within the associated company. To effectively deal with the momentum spillover effect in stock market volatility, this study proposes a multilayer Graph Convolutional Neural Network (GCNN)-based model for stock trend forecasting and intelligent quantitative trading, considering the influence of executive factors. The model is applied in practical classroom teaching to enrich classroom examples used in teaching tasks. First, historical stock data and market media information are combined. Subsequently, explicit relationships between companies and implicit relationships among executives are fused, using a multilayer GCNN. Finally, strategy training is conducted through Reinforcement Learning (RL). This model not only effectively improves the accuracy of stock trend predictions but also promotes portfolio optimization profits. In experiments conducted on the CSI100E and CSI300E datasets, the proposed model is compared with existing state-of-the-art models, obtaining accuracies of 60.19% and 57.44%, respectively. In contrast, the Graph Convolutional Network (GCN) obtained accuracies of 51.58% and 55.79%, respectively. The analysis concluded that the stock trend predictions of the proposed model are more accurate, and intelligent investment decisions based on these predictive values are also more effective. The methodology and experimental results of this study provide real-world examples for financial-technology courses, helping students understand complex market dynamics and quantitative trading strategies.

Key words: Graph Neural Network (GNN), Deep Reinforcement Learning (DRL), stock trend prediction, quantitative investment, teaching case

摘要:

教育信息化的发展为促进教学内容多样化提供了更多方案。为了丰富程序化交易课程的内涵, 对量化策略的探讨研究提出了新的案例教学方法。由于在股票趋势预测的任务中, 公司股票的预测会受到相关联公司及多方面的隐性层面高管关系的影响。为了有效应对股票市场波动中的动量溢出效应, 就高管因素的影响提出一个基于多层图卷积神经网络(GCNN)的股票趋势预测及智能量化交易模型, 将其应用于实际课堂教学中充实课堂实例教学任务。该模型首先结合股票历史数据和市场媒体信息, 然后利用多层GCNN提取股票之间包含的具有交叉效应的公司间显性关系和高管间隐性关系等信息进行趋势预测, 最后通过强化学习(RL)进行策略训练。该模型不仅有效提高了股票趋势预测的准确性, 而且有效提升了投资组合优化收益。在CSI100E和CSI300E数据集上的实验结果表明, 该模型得到60.19%和57.44%的准确率, 而图卷积网络(GCN)模型得到51.58%和55.79%的准确率。通过分析得出该模型的股票趋势预测效果更好, 加入了预测结果的智能投资决策也更有效。该研究的方法和实验结果为金融课程提供了实际案例, 可帮助学生理解复杂市场动态和量化交易策略。

关键词: 图神经网络, 深度强化学习, 股票趋势预测, 量化投资, 教学案例