1 |
刘振渤, 李慧, 刘桥缘, 等. 基于改进YOLOv5的交通标志小目标检测算法. 现代信息科技, 2024, 8(1): 94-98, 103.
|
|
LIU Z B, LI H, LIU Q Y, et al. Traffic sign small target detection algorithm based on improved YOLOv5. Modern Information Technology, 2024, 8(1): 94-98, 103.
|
2 |
徐鑫, 方凯. 基于改进YOLOv5的小目标交通标志检测算法. 湖北汽车工业学院学报, 2023, 37(4): 17- 21.
|
|
XU X, FANG K. Small target traffic sign detection algorithm based on improved YOLOv5. Journal of Hubei University of Automotive Industry, 2023, 37(4): 17- 21.
|
3 |
李孟歆, 李易营, 李松昂. 一种改进的YOLOv5小目标交通标志检测方法. 计算机仿真, 2023, 40(10): 152-156, 161.
|
|
LI M X, LI Y Y, LI S A. Improved small target traffic sign detection algorithm based on YOLOv5. Computer Simulation, 2023, 40(10): 152-156, 161.
|
4 |
陈春辉, 马社祥. 基于新型算子采样优化的交通标志检测网络. 计算机工程, 2022, 48(10): 306- 312.
doi: 10.19678/j.issn.1000-3428.0063188
|
|
CHEN C H, MA S X. Traffic sign detection network based on new operator sampling optimization. Computer Engineering, 2022, 48(10): 306- 312.
doi: 10.19678/j.issn.1000-3428.0063188
|
5 |
MANZARI O N, BOUDESH A, SHOKOUHI S B. Pyramid transformer for traffic sign detection[C]//Proceedings of the 12th International Conference on Computer and Knowledge Engineering. Washington D. C., USA: IEEE Press, 2022: 112-116.
|
6 |
张永亮, 陆阳, 朱芜强, 等. 基于多尺度特征提取与特征融合的交通标志检测. 计算机工程, 2022, 48(10): 270-278, 287.
doi: 10.19678/j.issn.1000-3428.0062282
|
|
ZHANG Y L, LU Y, ZHU W Q, et al. Traffic sign detection based on multi-scale feature extraction and feature fusion. Computer Engineering, 2022, 48(10): 270-278, 287.
doi: 10.19678/j.issn.1000-3428.0062282
|
7 |
TABERNIK D, SKOCAJ D. Deep learning for large-scale traffic-sign detection and recognition. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1427- 1440.
|
8 |
徐迪红. 复杂背景下的交通标志检测和分类算法研究[D]. 武汉: 武汉大学, 2010.
|
|
XU D H. Research on traffic sign detection and classification algorithm under complex background[D]. Wuhan: Wuhan University, 2010. (in Chinese)
|
9 |
|
10 |
曾雷鸣, 侯进, 陈子锐, 等. 基于弱语义分割的轻量化交通标志检测网络. 计算机工程, 2022, 48(9): 269-276, 285.
doi: 10.19678/j.issn.1000-3428.0062671
|
|
ZENG L M, HOU J, CHEN Z R, et al. Lightweight traffic sign detection network based on weak semantic segmentation. Computer Engineering, 2022, 48(9): 269-276, 285.
doi: 10.19678/j.issn.1000-3428.0062671
|
11 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3325-3336.
|
12 |
LI C, ZHOU A J, YAO A B. Omni-dimensional dynamic convolution[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 578-589.
|
13 |
|
14 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
15 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPs for faster neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 12021-12031.
|
16 |
|
17 |
|
18 |
LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//Proceedings of IEEE/CVF Conferenceon Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 14420-14430.
|
19 |
WOO S, DEBNATH S, HU R H, et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoencoders[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 16133-16142.
|
20 |
|
21 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
22 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
23 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
24 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
25 |
|
26 |
PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 821-830.
|
27 |
ZHANG H K, CHANG H, MA B P, et al. Dynamic R-CNN: towards high quality object detection via dynamic training[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 260-275.
|