1 |
WANG Y Y, SONG K C, LIU J, et al. RENet: rectangular convolution pyramid and edge enhancement network for salient object detection of pavement cracks. Measurement, 2021, 170, 108698.
doi: 10.1016/j.measurement.2020.108698
|
2 |
LI B, WANG K C, ZHANG A, et al. Automatic classification of pavement crack using deep convolutional neural network. International Journal of Pavement Engineering, 2020, 21(4): 457- 463.
doi: 10.1080/10298436.2018.1485917
|
3 |
郝巨鸣, 杨景玉, 韩淑梅, 等. 引入Ghost模块和ECA的YOLOv4公路路面裂缝检测方法. 计算机应用, 2023, 43(4): 1284- 1290.
|
|
HAO J M, YANG J Y, HAN S M, et al. YOLOv4 highway pavement crack detection method using Ghost module and ECA. Journal of Computer Applications, 2023, 43(4): 1284- 1290.
|
4 |
DU Y C, ZHONG S, FANG H Y, et al. Modeling automatic pavement crack object detection and pixel-level segmentation. Automation in Construction, 2023, 150, 104840.
doi: 10.1016/j.autcon.2023.104840
|
5 |
SHOLEVAR N, GOLROO A, ESFAHANI S R. Machine learning techniques for pavement condition evaluation. Automation in Construction, 2022, 136, 104190.
doi: 10.1016/j.autcon.2022.104190
|
6 |
ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 2778-2788.
|
7 |
李鹏程, 孙立双, 谢志伟, 等. 基于改进MobileNet-SSD的路面裂缝图像检测算法. 激光杂志, 2022, 43(7): 123- 127.
|
|
LI P C, SUN L S, XIE Z W, et al. Improved pavement crack image detection algorithm based on MobileNet-SSD. Laser Journal, 2022, 43(7): 123- 127.
|
8 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2207.02696v1.
|
9 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
10 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 10781-10790.
|
11 |
CHEN Z H, YANG C, LI Q F, et al. Disentangle your dense object detector[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 4939-4948.
|
12 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
13 |
MA D, FANG H Y, WANG N N, et al. Automatic detection and counting system for pavement cracks based on PCGAN and YOLO-MF. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22166- 22178.
doi: 10.1109/TITS.2022.3161960
|
14 |
ALI R, CHUAH J H, ABU TALIP M S, et al. Structural crack detection using deep convolutional neural networks. Automation in Construction, 2022, 133, 103989.
doi: 10.1016/j.autcon.2021.103989
|
15 |
YAO H, LIU Y, LI X, et al. A detection method for pavement cracks combining object detection and attention mechanism. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22179- 22189.
doi: 10.1109/TITS.2022.3177210
|
16 |
廖延娜, 李婉. 基于卷积神经网络的桥梁裂缝检测方法. 计算机工程与设计, 2021, 42(8): 2366- 2372.
|
|
LIAO Y N, LI W. Bridge crack detection method based on convolution neural network. Computer Engineering and Design, 2021, 42(8): 2366- 2372.
|
17 |
LI R X, YU J Y, LI F, et al. Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN. Construction and Building Materials, 2023, 362, 129659.
doi: 10.1016/j.conbuildmat.2022.129659
|
18 |
袁磊, 唐海, 陈彦蓉, 等. 改进YOLOv5的复杂环境道路目标检测方法. 计算机工程与应用, 2023, 59(16): 212- 222.
|
|
YUAN L, TANG H, CHEN Y R, et al. Improved YOLOv5 for road target detection in complex environments. Computer Engineering and Applications, 2023, 59(16): 212- 222.
|
19 |
HOU Y, LIU S, CAO D, et al. A deep learning method for pavement crack identification based on limited field images. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22156- 22165.
doi: 10.1109/TITS.2022.3160524
|
20 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 358-366.
|
21 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13713-13722.
|
22 |
HUANG J R, SHEN Q, WANG M, et al. Multiple attention Siamese network for high-resolution image change detection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 3127580.
|
23 |
谌婷婷, 魏怡. 基于改进YOLOv4的混凝土裂缝检测方法. 激光杂志, 2024, 45(1): 80- 85.
|
|
CHEN T T, WEI Y. Concrete crack detection method based on improved YOLOv4. Laser Journal, 2024, 45(1): 80- 85.
|
24 |
WANG J K, HE X H, SHAO F M, et al. A real-time bridge crack detection method based on an improved inception-resnet-v2 structure. IEEE Access, 2021, 9, 93209- 93223.
doi: 10.1109/ACCESS.2021.3093210
|
25 |
YU Z W, SHEN Y G, SHEN C K. A real-time detection approach for bridge cracks based on YOLOv4-FPM. Automation in Construction, 2021, 122, 103514.
doi: 10.1016/j.autcon.2020.103514
|