1 |
许鑫冉, 王腾宇, 鲁才. 图神经网络在知识图谱构建与应用中的研究进展. 计算机科学与探索, 2023, 17 (10): 2278- 2299.
doi: 10.3778/j.issn.1673-9418.2302059
|
|
XU X R , WANG T Y , LU C . Research progress of graph neural network in knowledge graph construction and application. Journal of Frontiers of Computer Science and Technology, 2023, 17 (10): 2278- 2299.
doi: 10.3778/j.issn.1673-9418.2302059
|
2 |
JI S , PAN S , CAMBRIA E , et al. A survey on knowledge graphs: representation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (2): 494- 514.
doi: 10.1109/TNNLS.2021.3070843
|
3 |
CAO Y X, WANG X, HE X N, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 151-161.
|
4 |
ZENG X X , TU X Q , LIU Y S , et al. Toward better drug discovery with knowledge graph. Current Opinion in Structural Biology, 2022, 72, 114- 126.
doi: 10.1016/j.sbi.2021.09.003
|
5 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 2787-2795.
|
6 |
LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. New York, USA: ACM Press, 2015: 2181-2187.
|
7 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. New York, USA: ACM Press, 2018: 1811-1818.
|
8 |
SUN Z, DENG Z, NIE J, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 7th International Conference on Learning Representations. New York, USA: ACM Press, 2019: 1-18.
|
9 |
杜雪盈, 刘名威, 沈立炜, 等. 面向链接预测的知识图谱表示学习方法综述. 软件学报, 2024, 35 (1): 87- 117.
|
|
DU X Y , LIU M W , SHEN L W , et al. Survey on representation learning methods of knowledge graph for link prediction. Journal of Software, 2024, 35 (1): 87- 117.
|
10 |
TERU K K, DENIS E G, HAMILTON W L, et al. Inductive relation prediction by subgraph reasoning[C]//Proceedings of the 37th International Conference on Machine Learning. New York, USA: ACM Press, 2020: 9448-9457.
|
11 |
MEILICKE C, FINK M, WANG Y J, et al. Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion[C]//Proceedings of the 17th International Semantic Web Conference. Berlin, Germany: Springer, 2018: 3-20.
|
12 |
LI Y L, YU K, ZHANG Y H, et al. Learning relation-specific representations for few-shot knowledge graph completion[EB/OL]. [2023-10-08]. https://arxiv.org/abs/2203.11639v2.
|
13 |
ZHENG S J , MAI S J , SUN Y , et al. Subgraph-aware few-shot inductive link prediction via meta-learning. IEEE Transactions on Knowledge and Data Engineering, 2022, 35 (6): 6512- 6517.
|
14 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 17th International Semantic Web Conference. Berlin, Germany: Springer, 2018: 593-607.
|
15 |
YE R, LI X, FANG Y J, et al. A vectorized relational graph convolutional network for multi-relational network alignment[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2019: 4135-4141.
|
16 |
HAMILTON W L, YING R, LESKOVEC J, et al. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 1025-1035.
|
17 |
NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2019: 4710-4723.
|
18 |
官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展. 软件学报, 2018, 29 (10): 2966- 2994.
|
|
GUAN S P , JIN X L , JIA Y T , et al. Knowledge reasoning over knowledge graph: a survey. Journal of Software, 2018, 29 (10): 2966- 2994.
|
19 |
|
20 |
|
21 |
MAI S J , ZHENG S J , YANG Y D , et al. Communicative message passing for inductive relation reasoning. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (5): 4294- 4302.
doi: 10.1609/aaai.v35i5.16554
|
22 |
ZHANG Y Q, YAO Q M, ZHANG Y Q, et al. Knowledge graph reasoning with relational digraph[C]//Proceedings of the 2022 ACM Web Conference. New York, USA: ACM Press, 2022: 912-924.
|
23 |
XIONG W H, YU M, CHANG S Y, et al. One-shot relational learning for knowledge graphs[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2018: 1980-1990.
|
24 |
ZHANG C X , YAO H X , HUANG C , et al. Few-shot knowledge graph completion. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (3): 3041- 3048.
doi: 10.1609/aaai.v34i03.5698
|
25 |
SHENG J W, GUO S, CHEN Z Y, et al. Adaptive attentional network for few-shot knowledge graph completion[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, USA: ACL, 2020: 1681-1691.
|
26 |
YANG R T , WEI Z C , FAN Y J , et al. A few-shot inductive link prediction model in knowledge graphs. IEEE Access, 2022, 10, 97370- 97380.
doi: 10.1109/ACCESS.2022.3206037
|
27 |
LI J T, WU R F, SUN W B, et al. What's behind the mask: understanding masked graph modeling for graph autoencoders[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2023: 1268-1279.
|
28 |
TOUTANOVA K, CHEN D Q, PANTEL P, et al. Representing text for joint embedding of text and knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2015: 1499-1509.
|
29 |
XIONG W H, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2017: 564-573.
|