1 |
LI B Y, CHAO X, WANG L G, et al. Dense nested attention network for infrared small target detection. IEEE Transactions on Image Processing, 2023, 32, 1745- 1758.
doi: 10.1109/TIP.2022.3199107
|
2 |
PENG L T, ZHU C L, BIAN L H. U-shape transformer for underwater image enhancement. IEEE Transactions on Image Processing, 2023, 32, 3066- 3079.
doi: 10.1109/TIP.2023.3276332
|
3 |
ZHANG R, ZHANG P, WANG Y. Design and implementation of data analysis and retrieval system for Chinese traditional patent medicine[C]//Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Washington D. C., USA: IEEE Press, 2022: 3752-3756.
URL
|
4 |
ARADI S. Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 740- 759.
doi: 10.1109/TITS.2020.3024655
|
5 |
MCMAHAN B H, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/1602.05629.
|
6 |
刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术. 软件学报, 2022, 33(3): 1057- 1092.
doi: 10.13328/j.cnki.jos.006446
|
|
LIU Y X, CHEN H, LIU Y H, et al. Privacy-preserving techniques in federated learning. Journal of Software, 2022, 33(3): 1057- 1092.
doi: 10.13328/j.cnki.jos.006446
|
7 |
LEE H, KIM J, HUSSAIN R, et al. On defensive neural networks against inference attack in federated learning[C]//Proceedings of IEEE International Conference on Communications. Washington D. C., USA: IEEE Press, 2021: 1-6.
URL
|
8 |
LUO X J, WU Y C, XIAO X K, et al. Feature inference attack on model predictions in vertical federated learning[C]//Proceedings of the 37th International Conference on Data Engineering (ICDE). Washington D. C., USA: IEEE Press, 2021: 181-192.
URL
|
9 |
高莹, 陈晓峰, 张一余, 等. 联邦学习系统攻击与防御技术研究综述. 计算机学报, 2023, 46(9): 1781- 1805.
|
|
GAO Y, CHEN X F, ZHANG Y Y, et al. A survey of attack and defense techniques for federated learning systems. Chinese Journal of Computers, 2023, 46(9): 1781- 1805.
|
10 |
STEINHARDT J, KOH P W, LIANG P. Certified defenses for data poisoning attacks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 3520-3532.
URL
|
11 |
FANG M H, CAO X Y, JIA J Y, et al. Local model poisoning attacks to Byzantine-robust federated learning[C]//Proceedings of the 29th USENIX Conference on Security Symposium. New York, USA: ACM Press, 2020: 1623-1640.
URL
|
12 |
BLANCHARD P, EL MHAMDI E M, GUERRAOUI R, et al. Machine learning with adversaries: Byzantine tolerant gradient descent[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 118-128.
URL
|
13 |
URL
|
14 |
YIN D, CHEN Y D, KANNAN R, et al. Byzantine-robust distributed learning: towards optimal statistical rates[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/1803.01498.
|
15 |
BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]//Proceedings of the 24th ACM-SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2017: 1175-1191.
URL
|
16 |
ZENG Z, DU Y, FANG Z, et al. FLBooster: a unified and efficient platform for federated learning acceleration[C]//Proceedings of the 39th International Conference on Data Engineering (ICDE). Washington D. C., USA: IEEE Press, 2023: 3140-3153.
URL
|
17 |
MADI A, STAN O, MAYOUE A, et al. A secure federated learning framework using homomorphic encryption and verifiable computing[C]//Proceedings of Conference on Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge. Berlin, Germany: Springer, 2021: 1-8.
URL
|
18 |
任一支, 刘容轲, 王冬, 等. 基于联邦学习的本地化差分隐私机制研究. 电子与信息学报, 2023, 45(3): 784- 792.
doi: 10.11999/JEIT221064
|
|
REN Y Z, LIU R K, WANG D, et al. A study of local differential privacy mechanisms based on federated learning. Journal of Electronics & Information Technology, 2023, 45(3): 784- 792.
doi: 10.11999/JEIT221064
|
19 |
|
20 |
LIU X Y, LI H W, XU G W, et al. Privacy-enhanced federated learning against poisoning adversaries. IEEE Transactions on Information Forensics and Security, 2021, 16, 4574- 4588.
doi: 10.1109/TIFS.2021.3108434
|
21 |
DONG Y, CHEN X J, LI K, et al. FLOD: oblivious defender for private Byzantine-robust federated learning with dishonest-majority[C]//Proceedings of European Symposium on Research in Computer Security. Berlin, Germany: Springer, 2021: 497-518.
|
22 |
RUAN W, XU M, FANG W, et al. Private, efficient, and accurate: protecting models trained by multi-party learning with differential privacy[C]//Proceedings of IEEE Symposium on Security and Privacy. Washington D. C., USA: IEEE Press, 2023: 1926-1943.
URL
|
23 |
HIDAYAT M A, NAKAMURA Y, DAWTON B, et al. AGC-DP: differential privacy with adaptive Gaussian clipping for federated learning[C]//Proceedings of the 24th IEEE International Conference on Mobile Data Management (MDM). Washington D. C., USA: IEEE Press, 2023: 199-208.
URL
|
24 |
周炜, 王超, 徐剑, 等. 基于区块链的隐私保护去中心化联邦学习模型. 计算机研究与发展, 2022, 59(11): 2423- 2436.
|
|
ZHOU W, WANG C, XU J, et al. Privacy-preserving and decentralized federated learning model based on the blockchain. Journal of Computer Research and Development, 2022, 59(11): 2423- 2436.
|
25 |
PHONG L T, AONO Y, HAYASHI T, et al. Privacy-preserving deep learning via additively homomorphic encryption. IEEE Transactions on Information Forensics and Security, 2017, 13(5): 1333- 1345.
doi: 10.1109/TIFS.2017.2787987
|
26 |
WANG S W, HUANG L S, NIE Y W, et al. Local differential private data aggregation for discrete distribution estimation. IEEE Transactions on Parallel and Distributed Systems, 2019, 30(9): 2046- 2059.
doi: 10.1109/TPDS.2019.2899097
|
27 |
PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[C]//Proceedings of International Conference on the Theory and Applications of Cryptographic Techniques. Berlin, Germany: Springer, 1999: 223-238.
URL
|
28 |
GENTRY C, SAHAI A, WATERS B. Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based[C]//Proceedings of the 33rd Annual International Cryptology Conference (CRYPTO). Berlin, Germany: Springer, 2013: 75-92.
URL
|
29 |
CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[C]//Proceedings of the 23rd International Conference on the Theory and Applications of Cryptology and Information Security. Berlin, Germany: Springer, 2017: 409-437.
URL
|
30 |
WEI K, LI J, DING M, et al. User-level privacy-preserving federated learning: analysis and performance optimization. IEEE Transactions on Mobile Computing, 2021, 21(9): 3388- 3401.
doi: 10.1109/TMC.2021.3056991
|