1 |
|
2 |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2023-08-12]. https://arxiv.org/pdf/1602.05629.
|
3 |
邱天晨, 郑小盈, 祝永新, 等. 面向非独立同分布数据的联邦学习架构. 计算机工程, 2023, 49 (7): 110- 117.
doi: 10.19678/j.issn.1000-3428.0064016
|
|
QIU T C , ZHENG X Y , ZHU Y X , et al. Federated learning architecture for non-IID data. Computer Engineering, 2023, 49 (7): 110- 117.
doi: 10.19678/j.issn.1000-3428.0064016
|
4 |
KAIROUZ P , MCMAHAN H B , AVENT B , et al. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 2021, 14 (1-2): 1- 210.
URL
|
5 |
|
6 |
WANG H, KAPLAN Z, NIU D, et al. Optimizing federated learning on non-IID data with reinforcement learning[C]//Proceedings of Conference on Computer Communications. Washington D. C., USA: IEEE Press, 2020: 1698-1707. 10.1109/INFOCOM41043.2020.9155494
|
7 |
|
8 |
HUANG Y T, CHU L Y, ZHOU Z R, et al. Personalized cross-silo federated learning on non-IID data[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2021: 7865-7873. 10.1609/aaai.v35i9.16960
|
9 |
JIAO Y T , WANG P , NIYATO D , et al. Toward an automated auction framework for wireless federated learning services market. IEEE Transactions on Mobile Computing, 2021, 20 (10): 3034- 3048.
doi: 10.1109/TMC.2020.2994639
|
10 |
|
11 |
WOODWORTH B E, WANG J L, MCMAHAN H B, et al. Graph oracle models, lower bounds, and gaps for parallel stochastic optimization[EB/OL]. [2023-08-12]. https://arxiv.org/pdf/1805.10222.
|
12 |
|
13 |
|
14 |
|
15 |
LI Q B, HE B S, SONG D. Model-contrastive federated learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 10713-10722. 10.1109/CVPR46437.2021.01057
|
16 |
GAO L, FU H Z, LI L, et al. FedDC: federated learning with non-IID data via local drift decoupling and correction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 10112-10121. 10.1109/CVPR52688.2022.00987
|
17 |
程勇, 董苗波, 刘洋, 等. 一种混合联邦学习方法及架构: 110490738A[P]. 2019-11-22.
|
|
CHENG Y, DONG M B, LIU Y, et al. A hybrid federated learning method and architecture: 110490738A[P]. 2019-11-22. (in Chinese)
|
18 |
|
19 |
LI Z X , LU J X , LUO S , et al. Towards effective clustered federated learning: a peer-to-peer framework with adaptive neighbor matching. IEEE Transactions on Big Data, 2024, 10 (6): 812- 826.
doi: 10.1109/TBDATA.2022.3222971
|
20 |
CORMEN T H , LEISERSON C E , RIVEST R L , et al. Introduction to algorithms. Cambridge, USA: MIT Press, 2022.
|
21 |
TIAN X L , OUYANG D T , WANG Y Y , et al. Combinatorial optimization and local search: a case study of the discount knapsack problem. Computers and Electrical Engineering, 2023, 105, 108551.
doi: 10.1016/j.compeleceng.2022.108551
|
22 |
|