1 |
韩波, 邢行, 赵文龙. 双碳目标下城市轨道交通灵活编组运营方案技术可行性及经济效益分析. 现代城市轨道交通, 2023 (3): 72- 78.
|
|
HAN B , XING X , ZHAO W L . Technical feasibility and economic benefit analysis of the flexible marshaling operation of urban rail transit under the background of carbon peaking and carbon neutrality. Modern Urban Transit, 2023 (3): 72- 78.
|
2 |
胡荣华. 城市轨道交通列车自动灵活编组技术应用研究. 城市轨道交通研究, 2022, 25 (11): 143- 147.
|
|
HU R H . Application of flexible urban rail transit train formation technology. Urban Mass Transit, 2022, 25 (11): 143- 147.
|
3 |
王立军, 张帅, 魏凡超. 灵活编组技术在城市轨道交通全自动运行系统中的应用. 城市轨道交通研究, 2023, 26 (2): 111-115, 120.
|
|
WANG L J , ZHANG S , WEI F C . Application of flexible train marshalling technology in urban rail transit FAO system. Urban Mass Transit, 2023, 26 (2): 111-115, 120.
|
4 |
纪玉清, 欧冬秀, 常鸣, 等. 列车虚拟编组应用需求及关键技术研究. 城市轨道交通研究, 2022, 25 (11): 57- 61.
|
|
JI Y Q , OU D X , CHANG M , et al. Research on application requirements and key technologies of train virtual formation. Urban Mass Transit, 2022, 25 (11): 57- 61.
|
5 |
禹丹丹, 韩宝明, 张琦, 等. 基于灵活编组的轨道交通列车开行方案优化方法. 北京交通大学学报, 2015, 39 (6): 21- 31.
|
|
YU D D , HAN B M , ZHANG Q , et al. A method for train plan of urban rail transit based on the flexible length of train formation. Journal of Beijing Jiaotong University, 2015, 39 (6): 21- 31.
|
6 |
范海宁, 何勇浩. 城市轨道交通列车灵活编组方案及功能实现. 城市轨道交通研究, 2021, 24 (9): 200- 203.
|
|
FAN H N , HE Y H . Flexible marshalling scheme and function realization of urban rail transit train. Urban Mass Transit, 2021, 24 (9): 200- 203.
|
7 |
王冬海, 黄柒光. 列车灵活编组在城市轨道交通全自动运行线路中的应用. 城市轨道交通研究, 2019, 22 (S02): 102- 105.
|
|
WANG D H , HUANG Q G . Application of flexible train formation on rail transit FAO lines. Urban Mass Transit, 2019, 22 (S02): 102- 105.
|
8 |
OU D X, DAI S G, ZHANG X Y, et al. Research on the optimal coupling and uncoupling position decision of flexible marshalling of urban rail transit[C]//Proceedings of the 6th International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT)2023. Singapore, Singapore: Springer, 2024: 570-590.
|
9 |
GOIKOETXEA J. Roadmap towards the wireless virtual coupling of trains[C]//Proceedings of International Workshop on Communication Technologies for Vehicles. Cham, Germany: Springer, 2016: 3-9.
|
10 |
FLAMMINI F, MARRONE S, NARDONE R, et al. Towards railway virtual coupling[C]//Proceedings of 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference. Washington D. C., USA: IEEE Press, 2018: 1-6.
|
11 |
DI MEO C , DI VAIO M , FLAMMINI F , et al. ERTMS/ETCS virtual coupling: proof of concept and numerical analysis. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (6): 2545- 2556.
|
12 |
|
13 |
NING B . Absolute braking and relative distance braking-train operation control modes in moving block systems. WIT Transactions on the Built Environment, 1998, 37, 991- 1001.
|
14 |
ZHAO Y , ORLIK P , PARSONS K , et al. Improvement of train transportation performance by convoy signaling. International Journal of Modern Physics C, 2016, 27 (7): 1650077.
|
15 |
|
16 |
荀径, 陈明亮, 宁滨, 等. 虚拟重联条件下地铁列车追踪运行性能衡量. 北京交通大学学报, 2019, 43 (1): 96- 103.
|
|
XUN J , CHEN M L , NING B , et al. Train tracking performance measurement under virtual coupling in subway. Journal of Beijing Jiaotong University, 2019, 43 (1): 96- 103.
|
17 |
CHEN M, XUN J, LIU Y. A coordinated collision mitigation approach for virtual coupling trains by using model predictive control[C]//Proceedings of 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). Washington D. C., USA: IEEE Press, 2020: 1-6.
|
18 |
XUN J , CHEN M , LIU Y , et al. An overspeed protection mechanism for virtual coupling in railway. IEEE Access, 2020, 8, 187400.
|
19 |
ZHOU Q, ZHANG C, BAO F, et al. The safety braking protection model of virtually coupled train platoon in subway[C]//Proceedings of 202010th Institute of Electrical and Electronics Engineers International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Washington D. C., USA: IEEE Press, 2020: 401-406.
|
20 |
QUAGLIETTA E , SPARTALIS P , WANG M , et al. Modelling and analysis of virtual coupling with dynamic safety margin considering risk factors in railway operations. Journal of Rail Transport Planning & Management, 2022, 22, 100313.
|
21 |
WANG J, LIU H, TANG T, et al. A space-time interval based protection method for virtual coupling[C]// Proceedings of 2022 China Automation Congress (CAC). Washington D. C., USA: IEEE Press, 2022: 4906-4911.
|
22 |
唐涛, 罗啸林, 刘宏杰, 等. 城轨列车虚拟编组安全防护与运行控制技术研究进展. 科技导报, 2023, 41 (10): 31- 42.
|
|
TANG T , LUO X L , LIU H J , et al. Research review of the protection and operation technology for virtually coupled train sets in metros. Science & Technology Review, 2023, 41 (10): 31- 42.
|
23 |
常鸣, 崔科, 王维旸, 等. 基于动势能转换的虚拟编组列车动态最小安全间隔. 同济大学学报(自然科学版), 2024, 52 (1): 41- 48.
|
|
CHANG M , CUI K , WANG W Y , et al. Dynamic minimum safety distance of virtual coupled trains based on kinetic-potential energy conversion. Journal of Tongji University (Natural Science), 2024, 52 (1): 41- 48.
|
24 |
|
25 |
SU S , SHE J , LI K , et al. A nonlinear safety equilibrium spacing based model predictive control for virtually coupled train set over gradient terrains. IEEE Transactions on Transportation Electrification, 2021, 8 (2): 2810- 2824.
|