1 |
张伟, 郑柯, 唐娉, 等. 深度卷积神经网络特征提取用于地表覆盖分类初探. 中国图象图形学报, 2017, 22 (8): 1144- 1153.
|
|
ZHANG W , ZHENG K , TANG P , et al. Deep convolutional neural network feature extraction is used for preliminary exploration of land cover classification. China Journal of Image and Graphics, 2017, 22 (8): 1144- 1153.
|
2 |
徐天伦, 李波, 胡文杰, 等. 基于CA-EfficientDet的棉布瑕疵检测方法. 中南民族大学学报(自然科学版), 2022, 41 (2): 243- 250.
|
|
XU T L , LI B , HU W J , et al. Cotton defect detection method based on CA-EfficientDet. Journal of South-Central University for Nationalities (Natural Science Edition), 2022, 41 (2): 243- 250.
|
3 |
庄集超, 郭保苏, 吴凤和. 基于可变形密集卷积神经网络的布匹瑕疵检测. 计量学报, 2023, 44 (2): 178- 185.
|
|
ZHUANG J C , GUO B S , WU F H . Fabric defect detection based on deformable dense convolutional neural network. Acta Metrologica Sinica, 2023, 44 (2): 178- 185.
|
4 |
赵楚, 段先华, 苏俊楷. 改进Faster RCNN的瓷砖表面瑕疵检测研究. 计算机工程与应用, 2023, 59 (14): 201- 208.
|
|
ZHAO C , DUAN X H , SU J K . Research on ceramic tile surface defect detection by improved faster RCNN. Computer Engineering and Applications, 2023, 59 (14): 201- 208.
|
5 |
LI F , LI F , XI Q G . DefectNet: toward fast and effective defect detection. IEEE Transactions on Instrumentation Measurement, 2021, 70, 3067221.
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
7 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 7263-7271.
|
8 |
|
9 |
|
10 |
陈益方, 张上, 冉秀康, 等. 基于改进YOLOv8的SAR图像飞机目标检测算法. 电讯技术, 2024, 64 (8): 1206- 1212.
|
|
CHEN Y F , ZHANG S , RAN X K , et al. An aircraft target detection algorithm based on improved YOLOv8 in SAR Image. Telecommunication Engineering, 2024, 64 (8): 1206- 1212.
|
11 |
LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2209.02976.
|
12 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
13 |
|
14 |
|
15 |
袁华清, 刘桂华, 王娅琼. 基于改进YOLOv3-tiny的织物表面小目标瑕疵检测. 制造业自动化, 2022, 44 (12): 172- 176.
|
|
YUAN H Q , LIU G H , WANG Y Q . Defect detection of small targets on fabric surface based on improved YOLOv3-tiny. Manufacturing Automation, 2022, 44 (12): 172- 176.
|
16 |
郭峰, 朱启兵, 黄敏, 等. 基于改进YOLOV4的陶瓷基板瑕疵检测. 光学精密工程, 2022, 30 (13): 1631.
|
|
GUO F , ZHU Q B , HUANG M , et al. Defect detection in ceramic substrate based on improved YOLOV4. Optics and Precision Engineering, 2022, 30 (13): 1631.
|
17 |
刘俊豪, 王美林, 谢兴, 等. 基于改进YOLOv5的皮革瑕疵检测算法. 计算机工程, 2023, 49 (8): 240- 249.
doi: 10.19678/j.issn.1000-3428.0064587
|
|
LIU J H , WANG M L , XIE X , et al. Leather defect detection algorithm based on improved YOLOv5. Computer Engineering, 2023, 49 (8): 240- 249.
doi: 10.19678/j.issn.1000-3428.0064587
|
18 |
LI B Y, LIU Y, WANG X G, et al. Gradient harmonized single-stage detector[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. New York, USA: ACM Press, 2019: 8577-8584.
|
19 |
WANG X , GAO H , JIA Z , et al. BL-YOLOv8:an improved road defect detection model based on YOLOv8. Sensors, 2023, 23 (20): 8361.
|
20 |
|
21 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 12021-12031.
|
22 |
TANG Y, HAN K, GUO J, et al. GhostNetv2: enhance cheap operation with long-range attention[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2022: 9969-9982.
|
23 |
ZHU C C, HE Y H, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 840-849.
|
24 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 9627-9636.
|
25 |
KONG T , SUN F C , LIU H P , et al. FoveaBox: beyound anchor-based object detection. IEEE Transactions on Image Processing, 2020, 29, 7389- 7398.
|
26 |
LIU W, LIAO S C, REN W Q, et al. High-level semantic feature detection: a new perspective for pedestrian detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5187-5196.
|
27 |
WANG J Q, CHEN K, YANG S, et al. Region proposal by guided anchoring[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 2965-2974.
|
28 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1580-1589.
|
29 |
|
30 |
GHIASI G, CUI Y, SRINIVAS A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 2918-2928.
|
31 |
|
32 |
HAN K , WANG Y H , XU C , et al. GhostNets on heterogeneous devices via cheap operations. International Journal of Computer Vision, 2022, 130 (4): 1050- 1069.
|
33 |
|
34 |
LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2112.05561v1.
|
35 |
YANG L, ZHANG R Y, LI L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2021: 11863-11874.
|
36 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of International Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
37 |
|
38 |
|
39 |
YU Y, ZHANG Y, CHENG Z, et al. MCA: multidimensional collaborative attention in deep convolutional neural networks for image recognition[EB/OL]. [2023-09-10]. https://github.com/ndsclark/MCANet.
|
40 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6154-6162.
|
41 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
42 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
43 |
|
44 |
倪富陶, 李倩, 聂云靖, 等. 基于改进YOLOv8的轻量化钢筋端面检测算法研究. 太原理工大学学报, 2024, 55 (4): 696- 704.
|
|
NI F T , LI Q , NIE Y J , et al. Lightweight rebar end detection algorithm based on improved YOLOv8. Taiyuan University of Technology, 2024, 55 (4): 696- 704.
|
45 |
刘子洋, 徐慧英, 朱信忠, 等. Bi-YOLO: 一种基于YOLOv8改进的轻量化目标检测算法. 计算机工程与科学, 2024, 46 (8): 1444- 1454.
|
|
LIU Z Y , XU H Y , ZHU Z X , et al. Bi-YOLO: an improved lightweight object detection algorithm based on YOLOv8n. Computer Engineering and Science, 2024, 46 (8): 1444- 1454.
|
46 |
|
47 |
DING R W , DAI L H , LI G P , et al. TDD-Net: a tiny defect detection network for printed circuit boards. CAAI Transactions on Intelligence Technology, 2019, 4 (2): 110- 116.
|
48 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 618-626.
|