| 1 | 刘三女牙.  人工智能+教育的融合发展之路. 国家教育行政学院学报, 2022, (10): 7- 10.  URL
 | 
																													
																							|  |  LIU S Y .  The road of integrated development of artificial intelligence and education. Journal of National Academy of Education Administration, 2022, (10): 7- 10.  URL
 | 
																													
																							| 2 | 陈恩红, 刘淇, 王士进, 等.  面向智能教育的自适应学习关键技术与应用. 智能系统学报, 2021, 16 (5): 886- 898.  URL
 | 
																													
																							|  |  CHEN E H ,  LIU Q ,  WANG S J , et al.  Key techniques and application of intelligent education oriented adaptive learning. CAAI Transactions on Intelligent Systems, 2021, 16 (5): 886- 898.  URL
 | 
																													
																							| 3 |  ABDELRAHMAN G ,  WANG Q ,  NUNES B .  Knowledge tracing: a survey. ACM Computing Surveys, 55 (11): 224. | 
																													
																							| 4 |  FAN X .  Item response theory and classical test theory: an empirical comparison of their item/person statistics. Educational Psychological Measurement, 1998, 58 (3): 357- 381.  doi: 10.1177/0013164498058003001
 | 
																													
																							| 5 |  DE LA TORRE J .  DINA model and parameter estimation: a didactic. Journal of Educational Behavioral Statistics, 2009, 34 (1): 115- 130.  doi: 10.3102/1076998607309474
 | 
																													
																							| 6 | 王炼红, 罗志辉, 刘畅.  面向慕课学习者评估的认知反应模型. 电子学报, 2023, 51 (1): 18- 25.  URL
 | 
																													
																							|  |  WANG L H ,  LUO Z H ,  LIU C .  Cognitive and response model for evaluation of MOOC learners. Acta Electronica Sinica, 2023, 51 (1): 18- 25.  URL
 | 
																													
																							| 7 |  CORBETT A T ,  ANDERSON J R .  Knowledge tracing: modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 1994, 4 (4): 253- 278. | 
																													
																							| 8 | AGARWAL D B R, MURALEEDHARAN A. Dynamic knowledge tracing through data driven recency weights[C]//Proceedings of the 13th International Conference on Educational Data Mining, Morocco: Open Access. Berlin, Germany: Springer, 2020: 725-729. | 
																													
																							| 9 | PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2015: 505-513. | 
																													
																							| 10 |  SU Y ,  CHENG Z ,  LUO P , et al.  Time-and-concept enhanced deep multidimensional item response theory for interpretable knowledge tracing. Knowledge-Based Systems, 2021, 218, 106819.  doi: 10.1016/j.knosys.2021.106819
 | 
																													
																							| 11 | GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 2330-2339. | 
																													
																							| 12 | NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 3101-3107. | 
																													
																							| 13 |  | 
																													
																							| 14 | GUO X P, HUANG Z J, GAO J, et al. Enhancing knowledge tracing via adversarial training[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 367-375. | 
																													
																							| 15 |  LIU Q ,  HUANG Z Y ,  YIN Y , et al.  EKT: exercise-aware knowledge tracing for student performance prediction. IEEE Transactions on Knowledge and Data Engineering, 2021, 33 (1): 100- 115.  doi: 10.1109/TKDE.2019.2924374
 | 
																													
																							| 16 | 孙建文, 周建鹏, 刘三女牙, 等.  基于多层注意力网络的可解释认知追踪方法. 计算机研究与发展, 2021, 58 (12): 2630- 2644.  URL
 | 
																													
																							|  |  SUN J W ,  ZHOU J P ,  LIU S Y , et al.  Hierarchical attention network based interpretable knowledge tracing. Journal of Computer Research and Development, 2021, 58 (12): 2630- 2644.  URL
 | 
																													
																							| 17 |  LIU S ,  YU J W ,  LI Q , et al.  Ability boosted knowledge tracing. Information Sciences, 2022, 596, 567- 587.  doi: 10.1016/j.ins.2022.02.044
 | 
																													
																							| 18 | 刘凤娟, 赵蔚, 姜强, 等.  基于知识图谱的个性化学习模型与支持机制研究. 中国电化教育, 2022, (5): 75-81, 90.  URL
 | 
																													
																							|  |  LIU F J ,  ZHAO W ,  JIANG Q , et al.  Research on personalized learning model and support mechanism based on knowledge graph. China Educational Technology, 2022, (5): 75-81, 90.  URL
 | 
																													
																							| 19 |  SHI D ,  WANG T ,  XING H , et al.  A learning path recommendation model based on a multidimensional knowledge graph framework for E-learning. Knowledge-Based Systems, 2020, 195, 105618. | 
																													
																							| 20 | 高嘉骐, 刘千慧, 黄文彬.  基于知识图谱的学习路径自动生成研究. 现代教育技术, 2021, 31 (7): 88- 96.  URL
 | 
																													
																							|  |  GAO J Q ,  LIU Q H ,  HUANG W B .  Research on automatic generation of learning paths based on knowledge graph. Modern Educational Technology, 2021, 31 (7): 88- 96.  URL
 | 
																													
																							| 21 |  ZHANG S ,  HUI N ,  ZHAI P , et al.  A fine-grained and multi-context-aware learning path recommendation model over knowledge graphs for online learning communities. Information Processing Management, 2023, 60 (5): 103464. | 
																													
																							| 22 |  ZHU H P ,  LIU Y ,  TIAN F , et al.  A cross-curriculum video recommendation algorithm based on a video-associated knowledge map. IEEE Access, 2018, 6, 57562- 57571. | 
																													
																							| 23 | ZHANG J N, SHI X J, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proceedings of the 26th International Conference on World Wide Web. New York, USA: ACM Press, 2017: 765-774. | 
																													
																							| 24 |  WANG L H ,  LI X Y ,  LUO Z H , et al.  Multivariate cognitive response framework for student performance prediction on MOOC. IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (3): 1221- 1233. | 
																													
																							| 25 |  FENG M Y ,  HEFFERNAN N ,  KOEDINGER K .  Addressing the assessment challenge with an online system that tutors as it assesses. User Modeling and User-Adapted Interaction, 2009, 19 (3): 243- 266. | 
																													
																							| 26 | CHANG H S, HSU H J, CHEN K T. Modeling exercise relationships in E-learning: a unified approach[C]//Proceedings of the 8th International Conference on Educational Data Mining, Washington D.C., USA: IEEE Press, 2015: 532-535. | 
																													
																							| 27 | SHEN S H, LIU Q, CHEN E H, et al. Convolutional knowledge tracing: modeling individualization in student learning process[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 1857-1860. |