Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (10): 140-149. doi: 10.19678/j.issn.1000-3428.0069489

• Artificial Intelligence and Pattern Recognition • Previous Articles     Next Articles

Photovoltaic Power Prediction with Optimized Transformer Integrating Pyramid Attention Module and Temporal Convolutional Network

ZHANG Hong1,*(), LI Feng1, MA Yanhong2, JI Wenxuan1, ZHENG Qipeng1   

  1. 1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2. State Grid Gansu Electric Power Company, Lanzhou 730000, Gansu, China
  • Received:2024-03-05 Revised:2024-04-21 Online:2025-10-15 Published:2024-08-22
  • Contact: ZHANG Hong

PAM结合TCN优化Transformer的光伏功率预测研究

张红1,*(), 李峰1, 马彦宏2, 姬文宣1, 郑启鹏1   

  1. 1. 兰州理工大学计算机与通信学院,甘肃 兰州 730050
    2. 国网甘肃省电力公司,甘肃 兰州 730000
  • 通讯作者: 张红
  • 基金资助:
    甘肃省科技重大专项计划(25ZYJA037); 甘肃省重点人才项目(2024RCXM57)

Abstract:

Accurate photovoltaic power prediction is crucial for enhancing grid stability and improving energy utilization efficiency. To address the limitations of existing methods, which struggle to simultaneously consider both long-term dependencies and short-term variation patterns of photovoltaic power, this study proposes a novel photovoltaic power prediction method named Solarformer. This method integrates a Pyramid Attention Module (PAM) with a Temporal Convolutional Network (TCN) to optimize the Transformer architecture. First, multiple feature selection mechanisms are employed to screen the input features, to enhance the model′s ability to characterize photovoltaic data features. Second, a coarse-grained construction module and PAM are utilized to optimize the Transformer encoder, capturing the long-term temporal dependency features of photovoltaic power at multiple scales. Third, a constraint mechanism based on the sunrise-sunset effect of photovoltaic power and the TCN are employed to optimize the Transformer decoder, strengthening the model′s ability to capture short-term variation features of photovoltaic power and better model its short-term variation patterns. Experimental results on the Sanyo dataset from Australia demonstrate that Solarformer can effectively improve photovoltaic power forecasting accuracy. Compared with the DLinear model, it reduces the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Symmetric Mean Absolute Percentage Error (SMAPE) by approximately 7.45%, 6.99%, and 14.10%, respectively.

Key words: photovoltaic power prediction, Transformer model, Pyramidal Attention Module (PAM), binding mechanism, Temporal Convolutional Network (TCN

摘要:

准确的光伏功率预测对于提高电网稳定性和用电效率至关重要。针对现有研究难以同时考虑光伏功率长期依赖性和短期变化模式的缺陷,提出一种金字塔注意力模块(PAM)结合时间卷积网络(TCN)优化Transformer的光伏功率预测方法Solarformer。基于多种特征选择机制筛选输入特征,增强对光伏数据特征的表征能力;利用粗粒度构造模块和PAM优化Transformer编码器,在多尺度上捕获光伏功率的长期时间依赖特征;利用光伏功率日出日落效应约束机制和TCN优化Transformer解码器,增强光伏功率的短期变化特征,以更好地捕捉其短期变化模式。在澳大利亚Sanyo数据集上进行实验,结果表明,Solarformer能够有效提高光伏功率的预测精度,相比DLinear模型,其均方根误差(RMSE)、平均绝对误差(MAE)和对称平均绝对百分比误差(SMAPE)分别降低了约7.45%、6.99%和14.10%。

关键词: 光伏功率预测, Transformer模型, 金字塔注意力模块, 约束机制, 时间卷积网络