| 1 |
BÖÖK H , LINDFORS A V . Site-specific adjustment of a NWP-based photovoltaic production forecast. Solar Energy, 2020, 211, 779- 788.
doi: 10.1016/j.solener.2020.10.024
|
| 2 |
FARA L , DIACONU A , CRACIUNESCU D , et al. Forecasting of energy production for photovoltaic systems based on ARIMA and ANN advanced models. International Journal of Photoenergy, 2021, 2021, 6777488.
|
| 3 |
CUI C Y , LI Z X , ZHANG J J . Building a prediction model of solar power generation based on improved grey Markov chain. International Journal of Global Energy Issues, 2022, 44(2/3): 139.
doi: 10.1504/IJGEI.2022.121396
|
| 4 |
李春来, 张海宁, 杨立滨, 等. 基于无迹卡尔曼滤波神经网络的光伏发电预测. 重庆大学学报, 2017, 40(4): 54- 61.
|
|
LI C L , ZHANG H N , YANG L B , et al. Photovoltaic power generation prediction based on unscented Kalman filter neural network. Journal of Chongqing University, 2017, 40(4): 54- 61.
|
| 5 |
ALSHAFEEY M , CSÁKI C . Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods. Energy Reports, 2021, 7, 7601- 7614.
doi: 10.1016/j.egyr.2021.10.125
|
| 6 |
ZAZOUM B . Solar photovoltaic power prediction using different machine learning methods. Energy Reports, 2022, 8, 19- 25.
|
| 7 |
GUPTA P , SINGH R . PV power forecasting based on data-driven models: a review. International Journal of Sustainable Engineering, 2021, 14(6): 1733- 1755.
doi: 10.1080/19397038.2021.1986590
|
| 8 |
MEENAL R , BINU D , RAMYA K C , et al. Weather forecasting for renewable energy system: a review. Archives of Computational Methods in Engineering, 2022, 29(5): 2875- 2891.
doi: 10.1007/s11831-021-09695-3
|
| 9 |
SINGLA P , DUHAN M , SAROHA S . A comprehensive review and analysis of solar forecasting techniques. Frontiers in Energy, 2022, 16(2): 187- 223.
doi: 10.1007/s11708-021-0722-7
|
| 10 |
葛浩然, 夏宇, 邹文进, 等. 基于RF-XGBoost的光伏发电功率预测. 电气自动化, 2022, 44(5): 12- 15.
|
|
GE H R , XIA Y , ZOU W J , et al. Photovoltaic power generation prediction based on RF-XGBoost. Electrical Automation, 2022, 44(5): 12- 15.
|
| 11 |
SAHU R K , SHAW B , NAYAK J R , et al. Short/medium term solar power forecasting of Chhattisgarh state of India using modified TLBO optimized ELM. Engineering Science and Technology, an International Journal, 2021, 24(5): 1180- 1200.
doi: 10.1016/j.jestch.2021.02.016
|
| 12 |
SHARMA J , SONI S , PALIWAL P , et al. A novel long term solar photovoltaic power forecasting approach using LSTM with Nadam optimizer: a case study of India. Energy Science & Engineering, 2022, 10(8): 2909- 2929.
|
| 13 |
ZHANG Y , KONG L Q . Photovoltaic power prediction based on hybrid modeling of neural network and stochastic differential equation. ISA Transactions, 2022, 128, 181- 206.
doi: 10.1016/j.isatra.2021.11.008
|
| 14 |
赵博超, 马嘉骏, 崔磊, 等. 基于改进VMD-XGBoost-BiLSTM组合模型的光伏发电异常检测. 计算机工程, 2024, 50(3): 306- 316.
doi: 10.19678/j.issn.1000-3428.0067583
|
|
ZHAO B C , MA J J , CUI L , et al. Anomaly detection for photovoltaic based on improved VMD-XGBoost-BiLSTM combination model. Computer Engineering, 2024, 50(3): 306- 316.
doi: 10.19678/j.issn.1000-3428.0067583
|
| 15 |
TIAN F Y , FAN X X , WANG R T , et al. A power forecasting method for ultra-short-term photovoltaic power generation using Transformer model. Mathematical Problems in Engineering, 2022, 2022, 9421400.
|
| 16 |
ZHOU Y , LI Y Z , WANG D J , et al. A multi-step ahead global solar radiation prediction method using an attention-based Transformer model with an interpretable mechanism. International Journal of Hydrogen Energy, 2023, 48(40): 15317- 15330.
doi: 10.1016/j.ijhydene.2023.01.068
|
| 17 |
WU H X, XU J H, WANG J M, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[EB/OL]. [2023-10-05]. https://arxiv.org/abs/2106.13008v5.
|
| 18 |
ZHOU H Y , ZHANG S H , PENG J Q , et al. Informer: beyond efficient Transformer for long sequence time-series forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106- 11115.
doi: 10.1609/aaai.v35i12.17325
|
| 19 |
JIANG Y Q , GAO T L , DAI Y X , et al. Very short-term residential load forecasting based on deep-autoformer. Applied Energy, 2022, 328, 120120.
doi: 10.1016/j.apenergy.2022.120120
|
| 20 |
CAO Y S , LIU G , LUO D H , et al. Multi-timescale photovoltaic power forecasting using an improved stacking ensemble algorithm based LSTM-Informer model. Energy, 2023, 283, 128669.
doi: 10.1016/j.energy.2023.128669
|
| 21 |
LIMOUNI T , YAAGOUBI R , BOUZIANE K , et al. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model. Renewable Energy, 2023, 205, 1010- 1024.
doi: 10.1016/j.renene.2023.01.118
|
| 22 |
WANG N , ZHAO X L . Time-series prediction based on double pyramid bidirectional feature fusion mechanism. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2023, 106(6): 886- 895.
|
| 23 |
蔡华锋, 唐艺豪. 基于Pyraformer网络的短期电力负荷预测. 武汉大学学报(工学版), 2023, 56(9): 1105- 1113.
|
|
CAI H F , TANG Y H . Short-term electricity load forecasting based on Pyraformer network. Journal of Wuhan University (Engineering Edition), 2023, 56(9): 1105- 1113.
|
| 24 |
LUO X , ZHANG D X , ZHU X . Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge. Energy, 2021, 225, 120240.
doi: 10.1016/j.energy.2021.120240
|
| 25 |
吴珺玥, 赵二刚, 郭增良, 等. 基于Spearman系数和TCN的光伏出力超短期多步预测. 太阳能学报, 2023, 44(9): 180- 186.
|
|
WU J Y , ZHAO E G , GUO Z L , et al. Ultra-short-term multi-step prediction of photovoltaic output based on Spearman coefficient and TCN. Acta Energiae Solaris Sinica, 2023, 44(9): 180- 186.
|
| 26 |
ZENG A L , CHEN M X , ZHANG L , et al. Are transformers effective for time series forecasting?. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(9): 11121- 11128.
doi: 10.1609/aaai.v37i9.26317
|