| 1 |
黄振亚. 面向个性化学习的数据挖掘方法与应用研究[D]. 合肥: 中国科学技术大学, 2020.
|
|
HUANG Z Y. Research on data mining method and application for personalized learning[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese)
|
| 2 |
WANG J S , LIN P C , TANG Z Y , et al. How problem difficulty and order influence programming education outcomes in online judge systems. Heliyon, 2023, 9 (11): e20947.
doi: 10.1016/j.heliyon.2023.e20947
|
| 3 |
HONTANGAS P , PONSODA V , OLEA J , et al. The choice of item difficulty in self-adapted testing. European Journal of Psychological Assessment, 2000, 16 (1): 3- 12.
doi: 10.1027//1015-5759.16.1.3
|
| 4 |
HA L A, YANEVA V, BALDWIN P, et al. Predicting the difficulty of multiple choice questions in a high-stakes medical exam[C]//Proceedings of the 14th Workshop on Innovative Use of NLP for Building Educational Applications. Stroudsburg, USA: ACL, 2019: 11-20.
|
| 5 |
FANG J S, ZHAO W, JIA D Y. Exercise difficulty prediction in online education systems[C]//Proceedings of the International Conference on Data Mining Workshops (ICDMW). Beijing, China: IEEE Press, 2019: 311-317.
|
| 6 |
YAN M , XIA J N , WU C , et al. A deep cascade model for multi-document reading comprehension. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 7354- 7361.
doi: 10.1609/aaai.v33i01.33017354
|
| 7 |
HUANG Z Y , LIU Q , CHEN E H , et al. Question difficulty prediction for READING problems in standard tests. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31 (1): 1352- 1359.
|
| 8 |
LIN L H, CHANG T H, HSU F Y. Automated prediction of item difficulty in reading comprehension using long short-term memory[C]//Proceedings of the International Conference on Asian Language Processing (IALP). Shanghai, China: IEEE Press, 2019: 132-135.
|
| 9 |
BI S, CHENG X Y, LI Y F, et al. Simple or complex? Complexity-controllable question generation with soft templates and deep mixture of experts model[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2021. Stroudsburg, USA: ACL, 2021: 4645-4654.
|
| 10 |
GORMLEY C, TONG Z. Elasticsearch: the definitive guide[M]. [S. l. ]: O'Reilly Media, 2015.
|
| 11 |
周东岱, 董晓晓, 顾恒年, 等. 综合多影响因素的试题难度自动预测模型构建研究. 现代远距离教育, 2022 (4): 32- 41.
|
|
ZHOU D D , DONG X X , GU H N , et al. A study on the construction of an automatic model for predicting the difficulty of item by integrating multiple influencing factors. Modern Distance Education, 2022 (4): 32- 41.
|
| 12 |
ALKHUZAEY S, GRASSO F, PAYNE T R, et al. A systematic review of data-driven approaches to item difficulty prediction[M]//ROLL I, McNAMARA D, SOSNOVSKY S, et al. Artificial intelligence in education. Berlin, Germany: Springer, 2021: 29-41.
|
| 13 |
DEVELLIS R F . Classical test theory. Medical Care, 2006, 44 (3): 50- 59.
|
| 14 |
FAN X T . Item response theory and classical test theory: an empirical comparison of their item/person statistics. Educational and Psychological Measurement, 1998, 58 (3): 357- 381.
doi: 10.1177/0013164498058003001
|
| 15 |
TORRE J . DINA model and parameter estimation: a didactic. Journal of Educational and Behavioral Statistics, 2009, 34 (1): 115- 130.
doi: 10.3102/1076998607309474
|
| 16 |
CHON Y V , SHIN T . Item difficulty predictors of a multiple-choice reading test. English Teaching, 2010, 65 (4): 257- 282.
doi: 10.15858/engtea.65.4.201012.257
|
| 17 |
SUSANTI Y, NISHIKAWA H, TOKUNAGA T, et al. Item difficulty analysis of English vocabulary questions[C]//Proceedings of the 8th International Conference on Computer Supported Education. Rome, Italy: SCITEPRESS, 2016: 267-274.
|
| 18 |
SANO M. Improvements in automated capturing of psycho-linguistic features in reading assessment text[C]//Proceedings of the Annual Meeting of National Council on Measurement in Education. Washington D. C., USA: IEEE Press, 2016: 1-27.
|
| 19 |
MASRI Y H , FERRARA S , FOLTZ P W , et al. Predicting item difficulty of science national curriculum tests: the case of key stage 2 assessments. The Curriculum Journal, 2017, 28 (1): 59- 82.
doi: 10.1080/09585176.2016.1232201
|
| 20 |
PANDAROVA I , SCHMIDT T , HARTIG J , et al. Predicting the difficulty of exercise items for dynamic difficulty adaptation in adaptive language tutoring. International Journal of Artificial Intelligence in Education, 2019, 29 (3): 342- 367.
doi: 10.1007/s40593-019-00180-4
|
| 21 |
佟威, 汪飞, 刘淇, 等. 数据驱动的数学试题难度预测. 计算机研究与发展, 2019, 56 (5): 1007- 1019.
|
|
TONG W , WANG F , LIU Q , et al. Data driven prediction for the difficulty of mathematical items. Journal of Computer Research and Development, 2019, 56 (5): 1007- 1019.
|
| 22 |
HSU F Y , LEE H M , CHANG T H , et al. Automated estimation of item difficulty for multiple-choice tests: an application of word embedding techniques. Information Processing & Management, 2018, 54 (6): 969- 984.
|
| 23 |
WAUTERS K , DESMET P , NOORTGATE W . Item difficulty estimation: an auspicious collaboration between data and judgment. Computers & Education, 2012, 58 (4): 1183- 1193.
|
| 24 |
刘建伟, 宋志妍. 循环神经网络研究综述. 控制与决策, 2022, 37 (11): 2753- 2768.
|
|
LIU J W , SONG Z Y . Overview of recurrent neural networks. Control and Decision, 2022, 37 (11): 2753- 2768.
|
| 25 |
姜囡, 庞永恒, 高爽. 基于注意力机制语谱图特征提取的语音识别. 吉林大学学报(理学版), 2024, 62 (2): 320- 330.
|
|
JIANG N , PANG Y H , GAO S . Speech recognition based on attention mechanism and spectrogram featureextraction. Journal of Jilin University (Science Edition), 2024, 62 (2): 320- 330.
|
| 26 |
RAHADIAN H , BANDONG S , WIDYOTRIATMO A , et al. Image encoding selection based on Pearson correlation coefficient for time series anomaly detection. Alexandria Engineering Journal, 2023, 82, 304- 322.
doi: 10.1016/j.aej.2023.09.070
|
| 27 |
QIU Z, WU X, FAN W. Question difficulty prediction for multiple choice problems in medical exams[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 139-148.
|