| 1 |
侯景, 邓晓梅, 汉鹏武. 限定域关系抽取技术研究综述. 计算机科学, 2024, 51 (1): 252- 265.
|
|
HOU J , DENG X M , HAN P W . A survey of restricted domain relation extraction techniques. Computer Science, 2024, 51 (1): 252- 265.
|
| 2 |
王传栋, 徐娇, 张永. 实体关系抽取综述. 计算机工程与应用, 2020, 56 (12): 25- 36.
|
|
WANG C D , XU J , ZHANG Y . Survey of entity relation extraction. Computer Engineering and Applications, 2020, 56 (12): 25- 36.
|
| 3 |
LIU Z P , WU C , MIAO H , et al. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford), 2015, 2015, bav095.
doi: 10.1093/database/bav095
|
| 4 |
|
| 5 |
PENG N , POON H , QUIRK C , et al. Cross-sentence N-ary relation extraction with graph LSTMs. Transactions of the Association for Computational Linguistics, 2017, 5, 101- 115.
doi: 10.1162/tacl_a_00049
|
| 6 |
|
| 7 |
ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, USA: ACL, 2016: 207-212.
|
| 8 |
ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics. Stroudsburg, USA: ACL, 2014: 2335-2344.
|
| 9 |
CHEN Y P , YANG W Z , WANG K , et al. A neuralized feature engineering method for entity relation extraction. Neural Networks, 2021, 141, 249- 260.
doi: 10.1016/j.neunet.2021.04.010
|
| 10 |
|
| 11 |
马建红, 龚天, 姚爽. 基于证据句与图卷积网络的文档级关系抽取. 计算机工程, 2023, 49 (8): 104- 110.
doi: 10.19678/j.issn.1000-3428.0065461
|
|
MA J H , GONG T , YAO S . Document-level relation extraction based on evidence sentence and graph convolutional network. Computer Engineering, 2023, 49 (8): 104- 110.
doi: 10.19678/j.issn.1000-3428.0065461
|
| 12 |
|
| 13 |
|
| 14 |
ZHOU L, WANG T Y, QU H, et al. A weighted GCN with logical adjacency matrix for relation extraction[C]//Proceedings of ECAI 2020. [S. l. ]: IOS Press, 2020: 2314-2321.
|
| 15 |
TIAN Y H, CHEN G M, SONG Y, et al. Dependency-driven relation extraction with attentive graph convolutional networks[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, USA: ACL, 2021: 4458-4471.
|
| 16 |
|
| 17 |
XUE F Z , SUN A X , ZHANG H , et al. GDPNet: refining latent multi-view graph for relation extraction. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (16): 14194- 14202.
doi: 10.1609/aaai.v35i16.17670
|
| 18 |
QIN H, TIAN Y H, SONG Y. Relation extraction with word graphs from N-grams[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2021: 2860-2868.
|
| 19 |
XU J , CHEN Y , QIN Y , et al. A feature combination-based graph convolutional neural network model for relation extraction. Symmetry, 2021, 13 (8): 1458.
doi: 10.3390/sym13081458
|
| 20 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2024-02-02]. https://arxiv.org/abs/1810.04805v2.
|
| 21 |
LAN Z, CHEN M, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[EB/OL]. [2024-02-02]. https://arxiv.org/abs/1909.11942.
|
| 22 |
|
| 23 |
JOSHI M , CHEN D Q , LIU Y H , et al. SpanBERT: improving pre-training by representing and predicting spans. Transactions of the Association for Computational Linguistics, 2020, 8, 64- 77.
doi: 10.1162/tacl_a_00300
|
| 24 |
WU S C, HE Y F. Enriching pre-trained language model with entity information for relation classification[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 2361-2364.
|
| 25 |
CHEN Y P , WANG K , YANG W Z , et al. A multi-channel deep neural network for relation extraction. IEEE Access, 2020, 8, 13195- 13203.
doi: 10.1109/ACCESS.2020.2966303
|
| 26 |
|
| 27 |
MANDYA A, BOLLEGALA D, COENEN F. Graph convolution over multiple dependency sub-graphs for relation extraction[C]//Proceedings of the 28th International Conference on Computational Linguistics. [S. l. ]: International Committee on Computational Linguistics, 2020: 6424-6435.
|
| 28 |
YU B W, XUE M G, ZHANG Z Y, et al. Learning to prune dependency trees with rethinking for neural relation extraction[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA: ACL, 2020: 3842-3852.
|
| 29 |
|
| 30 |
SUN C Z, GONG Y Y, WU Y B, et al. Joint type inference on entities and relations via graph convolutional networks[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2019: 1361-1370.
|
| 31 |
ZHAO Y, WAN H, GAO J, et al. Improving relation classification by entity pair graph[C]//Proceedings of Asian Conference on Machine Learning. [S. l. ]: PMLR, 2019: 1156-1171.
|
| 32 |
|
| 33 |
ZHANG Y H, ZHONG V, CHEN D Q, et al. Position-aware attention and supervised data improve slot filling[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2017: 35-45.
|
| 34 |
LIU Y , LI S J , WEI F R , et al. Relation classification via modeling augmented dependency paths. ACM Transactions on Audio, Speech, and Language Processing, 2016, 24 (9): 1589- 1598.
|
| 35 |
HU Y F , SHEN H , LIU W L , et al. A graph convolutional network with multiple dependency representations for relation extraction. IEEE Access, 2021, 9, 81575- 81587.
doi: 10.1109/ACCESS.2021.3086480
|
| 36 |
LONG J , LIU L , FEI H X , et al. Contextual semantic-guided entity-centric GCN for relation extraction. Mathematics, 2022, 10 (8): 1344.
doi: 10.3390/math10081344
|
| 37 |
LI D , LEI Z L , SONG B Y , et al. Neural attentional relation extraction with dual dependency trees. Journal of Computer Science and Technology, 2022, 37 (6): 1369- 1381.
doi: 10.1007/s11390-022-2420-2
|
| 38 |
ZHANG D , LIU Z , JIA W , et al. Dual attention graph convolutional network for relation extraction. IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (2): 530- 543.
doi: 10.1109/TKDE.2023.3289879
|
| 39 |
|