Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (10): 111-120. doi: 10.19678/j.issn.1000-3428.0069594

• Artificial Intelligence and Pattern Recognition • Previous Articles     Next Articles

Multi-View Time Series Prediction Based on Consistent Functional Neural Process

YANG Chunxia1,2, JIANG Yao1,2,*(), ZHAI Xuetong1,2, ZHOU Yuanyuan1,2   

  1. 1. Automation Institute, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    2. Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, Jiangsu, China
  • Received:2024-03-18 Revised:2024-05-27 Online:2025-10-15 Published:2025-10-29
  • Contact: JIANG Yao

基于一致性功能神经过程的多视图时序预测

杨春霞1,2, 蒋耀1,2,*(), 翟雪彤1,2, 周媛媛1,2   

  1. 1. 南京信息工程大学自动化学院, 江苏 南京 210044
    2. 江苏省大数据分析与技术重点实验室, 江苏 南京 210044
  • 通讯作者: 蒋耀
  • 基金资助:
    国家自然科学基金(61273229)

Abstract:

In the field of multi-view time series prediction, the effective fusion of information from different views is an important and challenging issue. Existing multi-view time series prediction methods have limitations in capturing historical data trends and are often affected by the inconsistent distribution of multi-view information. To address these two problems, this study leverages the Functional Neural Process (FNP) framework and proposes a Consistent FNP (CFNP) framework. The CFNP framework is designed with two core modules: view random correlation graph module and view distribution alignment module. The view random correlation graph module assists in understanding and predicting current data by analyzing the distribution of historical data. The view distribution alignment module is dedicated to reducing the difference in probability distributions between different views and improving the time response of the model by imposing constraints in the potential space. Consequently, the model can capture the intrinsic correlation of sequences. On two public datasets, the CFNP framework improves the Root Mean Square Error (RMSE) by 14% and 5% compared to existing methods, proving that it can predict multi-view time series more accurately.

Key words: multi-view learning, time series prediction, probabilistic prediction, Functional Neural Process (FNP), consistency regularization

摘要:

在多视图时间序列预测领域, 如何有效融合来自不同视图的信息, 是一个重要且具有挑战性的问题。现有的多视图时序预测方法在捕获历史数据趋势方面存在局限性, 同时也常受到多视图信息分布不一致的影响。针对这两个问题, 基于功能神经过程(FNP)框架, 提出一种一致性功能神经过程(CFNP)框架。CFNP框架中包含两个核心模块: 视图随机相关图模块和视图分布对齐模块。视图随机相关图模块通过分析历史数据的分布, 辅助对当前数据的理解和预测; 而视图分布对齐模块致力于缩小不同视图间的概率分布差异, 通过在潜在空间中施加约束, 提高模型对时间序列内在关联性的捕捉能力。在两个公开数据集上的实验结果表明, 相比于现有方法, CFNP框架在均方根误差(RMSE)上性能提升分别为14%和5%, 证明此框架能够更准确地预测多视图时间序列。

关键词: 多视图学习, 时序预测, 概率预测, 功能神经过程, 一致性正则化