| 1 |
LI L Y, YAN J C, YANG X K, et al. Learning interpretable deep state space model for probabilistic time series forecasting[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China: International Joint Conferences on Artificial Intelligence Organization, 2019: 2901-2908.
|
| 2 |
SALINAS D , FLUNKERT V , GASTHAUS J , et al. DeepAR: probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting, 2020, 36 (3): 1181- 1191.
doi: 10.1016/j.ijforecast.2019.07.001
|
| 3 |
HU W J, YANG Y, WANG J B, et al. Understanding electricity-theft behavior via multi-source data[C]//Proceedings of the Web Conference 2020. New York, USA: ACM Press, 2020: 2264-2274.
|
| 4 |
TRIRAT P, LEE J G. DF-TAR: a deep fusion network for citywide traffic accident risk prediction with dangerous driving behavior[C]//Proceedings of the Web Conference 2021. New York, USA: ACM Press, 2021: 1146-1156.
|
| 5 |
RAMCHANDANI A , FAN C , MOSTAFAVI A . DeepCOVIDNet: an interpretable deep learning model for predictive surveillance of COVID-19 using heterogeneous features and their interactions. IEEE Access, 2020, 8, 159915- 159930.
doi: 10.1109/ACCESS.2020.3019989
|
| 6 |
CHEN C C, LIANG J J, MA F L, et al. UNITE: uncertainty-based health risk prediction leveraging multi-sourced data[C]//Proceedings of the Web Conference 2021. New York, USA: ACM Press, 2021: 217-226.
|
| 7 |
YAN X Q , HU S Z , MAO Y Q , et al. Deep multi-view learning methods: a review. Neurocomputing, 2021, 448, 106- 129.
doi: 10.1016/j.neucom.2021.03.090
|
| 8 |
KAMARTHI H, KONG L K, RODRIGUEZ A, et al. CAMul: calibrated and accurate multi-view time-series forecasting[C]//Proceedings of the Web Conference 2022. New York, USA: ACM Press, 2022: 3174-3185.
|
| 9 |
QIN Y, SONG D J, CHEN H F, et al. A dual-stage attention-based recurrent neural network for time series prediction[EB/OL]. [2024-02-01]. https://arxiv.org/abs/1704.02971v4.
|
| 10 |
ADHIKARI B, XU X F, RAMAKRISHNAN N, et al. EpiDeep: exploiting embeddings for epidemic forecasting[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2019: 577-586.
|
| 11 |
TANG X F , YAO H X , SUN Y W , et al. Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (4): 5956- 5963.
doi: 10.1609/aaai.v34i04.6056
|
| 12 |
TAN Q X , YE M , YANG B Y , et al. DATA-GRU: dual-attention time-aware gated recurrent unit for irregular multivariate time series. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (1): 930- 937.
doi: 10.1609/aaai.v34i01.5440
|
| 13 |
杨静, 陆铭华, 马洁琼, 等. 基于交替循环神经网络的水下防御态势预测方法. 计算机工程, 2023, 49 (9): 69- 78.
doi: 10.19678/j.issn.1000-3428.0065183
|
|
YANG J , LU M H , MA J Q , et al. Underwater defense posture prediction method based on alternating recurrent neural network. Computer Engineering, 2023, 49 (9): 69- 78.
doi: 10.19678/j.issn.1000-3428.0065183
|
| 14 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
| 15 |
韩璐, 霍纬纲, 张永会, 等. 基于多尺度特征融合与双注意力机制的多元时间序列预测. 计算机工程, 2023, 49 (9): 99- 108.
doi: 10.19678/j.issn.1000-3428.0065846
|
|
HAN L , HUO W Q , ZHANG Y H , et al. Multivariate time series forecasting based on multi-scale feature fusion and dual-attention mechanism. Computer Engineering, 2023, 49 (9): 99- 108.
doi: 10.19678/j.issn.1000-3428.0065846
|
| 16 |
刘杭, 殷歆, 陈杰, 等. 基于混合网络模型的多维时间序列预测. 计算机工程, 2023, 49 (1): 121- 129.
doi: 10.19678/j.issn.1000-3428.0063718
|
|
LIU H , YIN X , CHEN J , et al. Multi-dimensional time-series prediction based on hybrid network models. Computer Engineering, 2023, 49 (1): 121- 129.
doi: 10.19678/j.issn.1000-3428.0063718
|
| 17 |
SALINAS D , FLUNKERT V , GASTHAUS J , et al. DeepAR: probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting, 2020, 36 (3): 1181- 1191.
doi: 10.1016/j.ijforecast.2019.07.001
|
| 18 |
KRISHNAN R , SHALIT U , SONTAG D . Structured inference networks for nonlinear state space models. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31 (1): 2101- 2109.
|
| 19 |
LI L Y , YAN J C , ZHANG Y H , et al. Learning generative RNN-ODE for collaborative time-series and event sequence forecasting. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (7): 7118- 7137.
|
| 20 |
FRACCARO M, SØNDERBY S K, PAQUET U, et al. Sequential neural models with stochastic layers[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Berlin, Germany: Springer, 2016: 2207-2215.
|
| 21 |
|
| 22 |
|
| 23 |
|
| 24 |
LOUIZOS C, SHI X, SCHUTTE K, et al. The functional neural process[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Berlin, Germany: Springer, 2019: 8746-8757.
|
| 25 |
KAMARTHI H , KONG L , RODRIGUEZ A , et al. When in doubt: neural non-parametric uncertainty quantification for epidemic forecasting. Advances in Neural Information Processing Systems, 2021, 34, 19796- 19807.
|
| 26 |
ZHANG N , SUN S . Multiview unsupervised shapelet learning for multivariate time series clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (4): 4981- 4996.
doi: 10.1109/TPAMI.2022.3198411
|
| 27 |
LI S, LI Y L, FU Y. Multi-view time series classification: a discriminative bilinear projection approach[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York, USA: ACM Press, 2016: 989-998.
|
| 28 |
EKAMBARAM V, MANGLIK K, MUKHERJEE S, et al. Attention based multi-modal new product sales time-series forecasting[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2020: 3110-3118.
|
| 29 |
PANDEY A , MEULEMEESTER H , MOOR B , et al. Multi-view kernel PCA for time series forecasting. Neurocomputing, 2023, 554, 126639.
doi: 10.1016/j.neucom.2023.126639
|
| 30 |
KUMAR R, YADAV S, DANIULAITYTE R, et al. eDarkFind: unsupervised multi-view learning for sybil account detection[C]//Proceedings of the Web Conference 2020. New York, USA: ACM Press, 2020: 1955-1965.
|
| 31 |
YAO H, WU F, KE J, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI press, 2018: 2588-2595.
|
| 32 |
ZHONG B, WANG P, PAN J, et al. TS-MVP: time-series representation learning by multi-view prototypical contrastive learning[C]//Proceedings of International Conference on Advanced Data Mining and Applications. Berlin, Germany: Springer, 2023: 278-292.
|
| 33 |
林彬. 基于多视图特征增强与融合的术中低血压预测研究[D]. 武汉: 华中科技大学, 2020.
|
|
LIN B. Research on intraoperative hypotension prediction based on multi-view feature enhancement and fusion[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese)
|