Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (5): 266-278. doi: 10.19678/j.issn.1000-3428.0069684

• Graphics and Image Processing • Previous Articles     Next Articles

Application of Bionic Design Algorithms Based on Latent Spatial Multi-Scale Fusion of Cross-Domain Images

ZHANG Yimin1, HUANG Xiaoying2, HUANG Zhengyang1, YANG Chaoxiang2, WAN Yongjing1,*(), JIANG Cuiling1   

  1. 1. School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
    2. School of Art Design and Media, East China University of Science and Technology, Shanghai 200237, China
  • Received:2024-04-01 Online:2025-05-15 Published:2024-07-25
  • Contact: WAN Yongjing

基于跨域图像潜在空间多尺度融合的仿生设计算法应用

章艺敏1, 黄晓英2, 黄正洋1, 杨超翔2, 万永菁1,*(), 蒋翠玲1   

  1. 1. 华东理工大学信息科学与工程学院, 上海 200237
    2. 华东理工大学艺术设计与传媒学院, 上海 200237
  • 通讯作者: 万永菁
  • 基金资助:
    国家自然科学基金(62272164)

Abstract:

Biomimetic design draws inspiration from nature and skillfully integrates biological characteristics into product design. Traditional biomimetic design methods often present limited scope for innovation, particularly when effectively integrating abstract biological inspiration with concrete product forms. To address these challenges, this paper proposes a novel algorithm called BioFusion for the multi-scale fusion of cross-domain images, which is aimed at facilitating the high-quality amalgamation of products and biological features. BioFusion involves a warm-start optimal inversion method to map real images into the latent space of a Generative Adversarial Network (GAN) generator. The latent space of the pre-trained model is originally derived from a product dataset. Through domain expansion via few-shot fine tuning, this latent space can be extended to a fusion space containing biological characteristics. Subsequently, a cross-domain multi-scale Latent Interpolation Style Mixing (LISM) method is proposed to effectively integrate the semantic features of the product image and biological image domains. The model is trained on a self-constructed product dataset and compared with methods such as DGBID and Smooth Diffusion in terms of the inversion quality and cross-domain image fusion effect. The experimental results show that BioFusion is capable of generating realistic and morphologically aware fused images, and it shows excellent performance in terms of the Fréchet Inception Distance (FID), image Interpolation Standard Deviation (ISTD) and Blended Image Quality Index (BIQI), with values reaching 34.65, 18.37, and 1.11, respectively. Additionally, BioFusion performs well in multi-scale bionic fusion and can generate fused images containing different dimensions of semantic information, providing designers with rich bionic design inspirations and references.

Key words: bionic design, BioFusion algorithm, cross-domain images, multi-scale interpolated fusion, Generative Adversarial Networks (GAN)

摘要:

在工业设计领域, 仿生设计是一种从自然界中汲取灵感并将生物特征与产品设计巧妙结合的方法。然而, 传统仿生设计方法往往存在创新性不足的问题, 难以有效融合抽象生物灵感与具象产品形态。为了解决上述问题, 提出一种跨域图像多尺度仿生融合算法BioFusion, 旨在实现产品与生物特征的高质量融合。首先采用热启动优化反演方法, 将图像映射至生成对抗网络(GAN)的生成器潜在空间, 然后通过基于少样本微调的生成模型域扩展, 将基于产品数据集训练的潜在空间扩展至包含生物特征的融合空间, 之后提出一种跨域多尺度插值融合方法LISM, 有效整合产品图像域和生物图像域的语义特征。在自建的产品数据集上训练该算法模型, 并在反演质量及跨域图像融合效果方面将其与DGBID、Smooth Diffusion等方法进行对比, 实验结果表明, BioFusion能够生成逼真且富有形态感知的融合图像, 在弗雷谢特距离(FID)、图像插值标准差(ISTD)和融合图像质量(BIQI)上表现较好, 分别达到34.65、18.37和1.11。此外, BioFusion在多尺度仿生融合方面表现良好, 能够生成包含不同维度语义信息的融合图像, 从而为设计者提供丰富的仿生设计灵感和参考。

关键词: 仿生设计, BioFusion算法, 跨域图像, 多尺度插值融合, 生成对抗网络