1 |
YANG Y , ZHU Q X , WANG W , et al. Structure bionic design method oriented to integration of biological advantages. Structural and Multidisciplinary Optimization, 2021, 64 (3): 1017- 1039.
doi: 10.1007/s00158-021-02912-4
|
2 |
罗仕鉴, 边泽, 张宇飞, 等. 基于形态匹配的产品仿生设计融合. 计算机集成制造系统, 2020, 26 (10): 2633- 2641.
doi: 10.13196/j.cims.2020.10.003
|
|
LUO S J , BIAN Z , ZHANG Y F , et al. Product bionic fusion design based on shape matching. Computer Integrated Manufacturing Systems, 2020, 26 (10): 2633- 2641.
doi: 10.13196/j.cims.2020.10.003
|
3 |
SOMEPALLI G, SINGLA V, GOLDBLUM M, et al. Diffusion art or digital forgery? investigating data replication in diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 6048-6058.
|
4 |
|
5 |
LIU P , WANG Y Y , DU A G , et al. Disentangling latent space better for few-shot image-to-image translation. International Journal of Machine Learning and Cybernetics, 2023, 14 (2): 419- 427.
doi: 10.1007/s13042-022-01552-4
|
6 |
SHEN Y J, GU J J, TANG X O, et al. Interpreting the latent space of GANs for semantic face editing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 9243-52.
|
7 |
罗嗣卿, 陈慧. 基于生成对抗网络的图像场景转换. 计算机工程, 2023, 49 (4): 217- 225.
doi: 10.19678/j.issn.1000-3428.0066077
|
|
LUO S Q , CHEN H . Image-scene transformation based on generative adversarial networks. Computer Engineering, 2023, 49 (4): 217- 225.
doi: 10.19678/j.issn.1000-3428.0066077
|
8 |
CHEN Y C, LIN H J, SHU M, et al. Facelet-bank for fast portrait manipulation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 3541-3549.
|
9 |
BERTHELOT D, RAFFEL C, ROY A, et al. Understanding and improving interpolation in autoencoders via an adversarial regularizer[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1807.07543.
|
10 |
ABDAL R, QIN Y P, WONKA P. Image2StyleGAN: how to embed images into the StyleGAN latent space?[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 4432-4441.
|
11 |
KARRAS T, LAINE S, AILA T M. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 4401-4410.
|
12 |
KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 8110-8119.
|
13 |
KARRAS T, AITTALA M, LAINE S, et al. Alias-free generative adversarial networks[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2021: 852-863.
|
14 |
TOV O , ALALUF Y , NITZAN Y , et al. Designing an encoder for StyleGAN image manipulation. ACM Transactions on Graphics, 2021, 40 (4): 1- 14.
URL
|
15 |
XIA W , ZHANG Y , YANG Y , et al. Gan inversion: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45 (3): 3121- 3138.
URL
|
16 |
|
17 |
KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1710.10196.
|
18 |
|
19 |
|
20 |
PAN X , ZHAN X , DAI B , et al. Exploiting deep generative prior for versatile image restoration and manipulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44 (11): 7474- 7489.
|
21 |
ROICH D , MOKADY R , BERMANO A H , et al. Pivotal tuning for latent-based editing of real images. ACM Transactions on Graphics, 2022, 42 (1): 1- 13.
URL
|
22 |
NITZAN Y, GHARBI M, ZHANG R, et al. Domain expansion of image generators[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 15933-15942.
|
23 |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 586-595.
|
24 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 4700-4708.
|
25 |
|
26 |
RICHARDSON E, ALALUF Y, PATASHNIK O, et al. Encoding in style: a StyleGAN encoder for image-to-image translation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 2287-2296.
|
27 |
YANG L J, LUO P, LOY C C, et al. A large-scale car dataset for fine-grained categorization and verification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 3973-3981.
|
28 |
|
29 |
SARA U , AKTER M , UDDIN M S . Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. Journal of Computer and Communications, 2019, 7 (3): 8- 18.
URL
|
30 |
SETIADI D R I M . PSNR vs SSIM: imperceptibility quality assessment for image steganography. Multimedia Tools and Applications, 2021, 80 (6): 8423- 8444.
doi: 10.1007/s11042-020-10035-z
|
31 |
WANG Z , BOVIK A C , SHEIKH H R , et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612.
URL
|
32 |
|
33 |
|
34 |
DENG Z G , LV J , LIU X , et al. Bionic design model for co-creative product innovation based on deep generative and BID. International Journal of Computational Intelligence Systems, 2023, 16 (1): 8.
doi: 10.1007/s44196-023-00187-9
|
35 |
|
36 |
|
37 |
|