1 |
CHEN H G , HE X H , QING L B , et al. Real-world single image super-resolution: a brief review. Information Fusion, 2022, 79, 124- 145.
doi: 10.1016/j.inffus.2021.09.005
|
2 |
丁子轩, 俞雷, 张娟, 等. 基于深度残差自适应注意力网络的图像超分辨率重建. 计算机工程, 2023, 49 (5): 231- 238.
doi: 10.19678/j.issn.1000-3428.0064243
|
|
DING Z X , YU L , ZHANG J , et al. Image super-resolution reconstruction based on depth residual adaptive attention network. Computer Engineering, 2023, 49 (5): 231- 238.
doi: 10.19678/j.issn.1000-3428.0064243
|
3 |
JEEVAN P, SRINIDHI A, PRATHIBA P, et al. WaveMixSR: resource-efficient neural network for image super-resolution[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D.C., USA: IEEE Press, 2024: 5884-5892.
|
4 |
王晔, 孙志宽, 李征. 基于生成对抗网络与噪声分布的图像超分辨率重建方法. 四川大学学报(自然科学版), 2023, 60 (3): 45- 54.
doi: 10.19907/j.0490-6756.2023.032001
|
|
WANG Y , SUN Z K , LI Z . An image super-resolution reconstruction method based on generative adversarial network and noise distribution. Journal of Sichuan University (Natural Science Edition), 2023, 60 (3): 45- 54.
doi: 10.19907/j.0490-6756.2023.032001
|
5 |
|
6 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 1646-1654.
|
7 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2017: 136-144.
|
8 |
柳聪, 屈丹, 司念文, 等. 基于深度可分离卷积的轻量级图像超分辨率重建. 计算机工程, 2022, 48 (6): 228- 234.
doi: 10.19678/j.issn.1000-3428.0061892
|
|
LIU C , QU D , SI N W , et al. Lightweight image super-resolution reconstruction based on depthwise separable convolution. Computer Engineering, 2022, 48 (6): 228- 234.
doi: 10.19678/j.issn.1000-3428.0061892
|
9 |
AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[EB/OL]. [2024-03-05]. https://arxiv.org/abs/1803.08664.
|
10 |
HUI Z, WANG X M, GAO X B. Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 723-731.
|
11 |
HUI Z, GAO X B, YANG Y C, et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 2024-2032.
|
12 |
LI W, ZHOU K, QI L, et al. LAPAR: linearly-assembled pixel-adaptive regression network for single image super-resolution and beyond[EB/OL]. [2024-03-05]. https://arxiv.org/abs/2105.10422.
|
13 |
WANG L, DONG X, WANG Y, et al. Exploring sparsity in image super-resolution for efficient inference[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 4917-4926.
|
14 |
|
15 |
ZHANG X M, LI T R, ZHAO X L. Boosting single image super-resolution via partial channel shifting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 13223-13232.
|
16 |
DING X H, GUO Y C, DING G G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 1911-1920.
|
17 |
KONG F Y, LI M X, LIU S W, et al. Residual local feature network for efficient super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2022: 766-776.
|
18 |
AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2017: 126-135.
|
19 |
|
20 |
|
21 |
|
22 |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2001: 416-423.
|
23 |
HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 5197-5206.
|
24 |
MATSUI Y , ITO K , ARAMAKI Y , et al. Sketch-based manga retrieval using Manga109 dataset. Multimedia Tools and Applications, 2017, 76 (20): 21811- 21838.
doi: 10.1007/s11042-016-4020-z
|
25 |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 586-595.
|
26 |
|
27 |
DU Z C, LIU D, LIU J, et al. Fast and memory-efficient network towards efficient image super-resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2022: 853-862.
|
28 |
|
29 |
LI X, DONG J X, TANG J H, et al. DLGSANet: lightweight dynamic local and global self-attention network for image super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 12792-12801.
|