Abstract:
Aiming at the problem that Minimum Class Variance Support Vector Machines(MCVSVM) which utilize only information in the non-null space of the within-class scatter matrix in small sample size case, this paper presents a novel algorithm called Least-Square-based Minimum Class Variance Support Vector Machines(LS-MCVSVM). The optimization problem of LS-MCVSVM can be solved by using Newton optimization, and the small sample problem can be avoided efficiently. Experimental results on several real datasets show that LS-MCVSVM can improve the generating ability and reduce the training time greatly.
Key words:
supervised learning,
Minimum Class Variance Support Vector Machines(MCVSVM),
optimization algorithm
摘要:
针对最小类方差支撑向量机(MCVSVM)在小样本情况下仅利用类内散度矩阵非零空间中信息的问题,提出基于最小二乘的最小类方差支撑向量机(LS-MCVSVM)算法,通过牛顿优化法迭代求解LS-MCVSVM的优化问题,从而有效解决了小样本问题。实验结果表明,相对于MCVSVM,LS-MCVSVM算法可进一步提高泛化能力,减少训练时间开销。
关键词:
监督学,
最小类方差支撑向量,
优化算法
CLC Number:
WANG Xiao-Meng, WANG Shi-Tong. Least-Square-based Minimum Class Variance Support Vector Machines[J]. Computer Engineering, 2010, 36(12): 19-21.
王晓明, 王士同. 基于最小二乘的最小类方差支撑向量机[J]. 计算机工程, 2010, 36(12): 19-21.