1 |
李松江, 吴宁, 王鹏, 等. 基于改进Cascade RCNN的车辆目标检测方法. 计算机工程与应用, 2021, 57 (5): 123- 130.
|
|
LI S J , WU N , WANG P , et al. Vehicle target detection method based on improved Cascade RCNN. Computer Engineering and Applications, 2021, 57 (5): 123- 130.
|
2 |
CAI Z , VASCONCELOS N . Cascade R-CNN: high quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (5): 1483- 1498.
doi: 10.1109/TPAMI.2019.2956516
|
3 |
周康, 朱宗晓, 徐征宇, 等. 改进Faster R-CNN的道路目标检测. 计算机与数字工程, 2022, 50 (4): 750- 756.
|
|
ZHOU K , ZHU Z X , XU Z Y , et al. Road target detection based on improved Faster R-CNN. Computer & Digital Engineering, 2022, 50 (4): 750- 756.
|
4 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
5 |
李国进, 胡洁, 艾矫燕. 基于改进SSD算法的车辆检测. 计算机工程, 2022, 48 (1): 266- 274.
URL
|
|
LI G J , HU J , AI J Y . Vehicle detection based on improved SSD algorithm. Computer Engineering, 2022, 48 (1): 266- 274.
URL
|
6 |
SZEGEDY C , IOFFE S , VANHOUCKE V , et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31 (1): 4278- 4284.
|
7 |
|
8 |
郭克友, 王苏东, 李雪, 等. 基于Dim env-YOLO算法的昏暗场景车辆多目标检测. 计算机工程, 2023, 49 (3): 312- 320.
URL
|
|
GUO K Y , WANG S D , LI X , et al. Multi-target detection of vehicles in dim scenes based on Dim env-YOLO algorithm. Computer Engineering, 2023, 49 (3): 312- 320.
URL
|
9 |
|
10 |
|
11 |
LI G, LI X, WANG Y J, et al. PseCo: pseudo labeling and consistency training for semi-supervised object detection[EB/OL]. [2023-09-05]. https://arxiv.org/abs/2203.16317.
|
12 |
ZHANG J C, LIN X R, ZHANG W, et al. Semi-DETR: semi-supervised object detection with detection transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 23809-23818.
|
13 |
KAR P, CHUDASAMA V, ONOE N, et al. Revisiting class imbalance for end-to-end semi-supervised object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 4569-4578.
|
14 |
ZHOU H Y , JIANG F , LU H T . SSDA-YOLO: semi-supervised domain adaptive YOLO for cross-domain object detection. Computer Vision and Image Understanding, 2023, 229, 103649.
doi: 10.1016/j.cviu.2023.103649
|
15 |
|
16 |
|
17 |
|
18 |
GE Z, LIU S T, LI Z M, et al. OTA: optimal transport assignment for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 303-312.
|
19 |
LAU K W , PO L M , REHMAN Y A U . Large separable kernel attention: rethinking the large kernel attention design in CNN. Expert Systems with Applications, 2024, 236, 121352.
doi: 10.1016/j.eswa.2023.121352
|
20 |
GUO M H , LU C Z , LIU Z N , et al. Visual attention network. Computational Visual Media, 2023, 9 (4): 733- 752.
doi: 10.1007/s41095-023-0364-2
|
21 |
ZHENG Z H , WANG P , LIU W , et al. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 12993- 13000.
doi: 10.1609/aaai.v34i07.6999
|
22 |
|
23 |
TIAN Z , SHEN C , CHEN H , et al. FCOS: a simple and strong anchor-free object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (4): 1922- 1933.
|
24 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2980-2988.
|
25 |
|