Abstract:
Original Least Square Support Vector Machine(LSSVM) algorithm can not reach desired precision in multi-scale regression. To solve the problem, a multi-scale wavelet LSSVM algorithm is proposed by using a wavelet kernel. Mexican-hat wavelet function is used as the support vector kernel function, and the Least Square Wavelet Support Vector Machine(LS-WSVM) algorithm is presented. On this basis, the global optimum of the multi-scale regression modeling problem can be obtained by solving a quadratic programming problem. As a result, the regression model can effectively approximate multi-scale signals. Simulation results show that LS-WSVM is an efficient modeling method, and has high precision.
Key words:
multi-scale,
least square,
wavelet kernel,
Support Vector Machine(SVM),
MARR kernel,
regression modeling
摘要: 普通最小二乘支持向量机算法用于多尺度回归建模时精度较低。针对该问题,选取墨西哥草帽小波函数作为最小二乘支持向量机的核函数,设计一种基于小波核的多尺度最小二乘小波支持向量机。在此基础上,通过解二次优化问题求出多尺度回归建模问题的全局最优解,最终得出的多尺度回归模型能够有效地逼近多尺度信号。仿真结果表明,该算法具有较高的精度。
关键词:
多尺度,
最小二乘,
小波核,
支持向量机,
MARR核,
回归建模
CLC Number:
ZHANG Xiang-Qing, WANG Lei, BO Feng. Regression Modeling of Multi-scale Least Square Wavelet Support Vector Machine[J]. Computer Engineering, 2012, 38(10): 175-177.
张相胜, 王蕾, 潘丰. 多尺度最小二乘小波支持向量机的回归建模[J]. 计算机工程, 2012, 38(10): 175-177.