1 |
PATWAL A , DIWAKAR M , TRIPATHI V , et al. Crowd counting analysis using deep learning: a critical review. Procedia Computer Science, 2023, 218, 2448- 2458.
doi: 10.1016/j.procs.2023.01.220
|
2 |
LEIBE B, SEEMANN E, SCHIELE B. Pedestrian detection in crowded scenes[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE Press, 2005: 322-335.
|
3 |
LI M, ZHANG Z X, HUANG K Q, et al. Estimating the number of people in crowded scenes by MID based foreground segmentation and head-shoulder detection[C]//Proceedings of the 19th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2008: 1-4.
|
4 |
IDREES H, SALEEMI I, SHAH M. Multi-source, multi-scale counting in dense crowd images: US9946952[P]. 2018-04-17.
|
5 |
CHAN A B, VASCONCELOS N. Bayesian Poisson regression for crowd counting[C]//Proceedings of the 12th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2009: 545-551.
|
6 |
RYAN D, DENMAN S, FOOKES C, et al. Crowd counting using multiple local features[C]//Proceedings of Digital Image Computing: Techniques and Applications. Melbourne, Australia: IEEE Press, 2009: 81-88.
|
7 |
卢振坤, 刘胜, 钟乐, 等. 人群计数研究综述. 计算机工程与应用, 2022, 58 (11): 33- 46.
doi: 10.3778/j.issn.1002-8331.2111-0281
|
|
LI Z K , LIU S , ZHONG Y , et al. Survey on research of crowd counting. Computer Engineering and Applications, 2022, 58 (11): 33- 46.
doi: 10.3778/j.issn.1002-8331.2111-0281
|
8 |
DAVIES A C , VELASTIN S A , YIN J H . Crowd monitoring using image processing. Electronics & Communication Engineering Journal, 1995, 7 (1): 37- 47.
doi: 10.3969/j.issn.2096-2657.1995.01.008
|
9 |
FAN Z Z , ZHANG H , ZHANG Z , et al. A survey of crowd counting and density estimation based on convolutional neural network. Neurocomputing, 2022, 472, 224- 251.
doi: 10.1016/j.neucom.2021.02.103
|
10 |
KHAN M A , MENOUAR H , HAMILA R . Revisiting crowd counting: state-of-the-art, trends, and future perspectives. Image and Vision Computing, 2023, 129, 104597.
doi: 10.1016/j.imavis.2022.104597
|
11 |
ZHANG Y Y, ZHOU D S, CHEN S Q, et al. Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 589-597.
|
12 |
THANASUTIVES P, FUKUI K I, NUMAO M, et al. Encoder-decoder based convolutional neural networks with multi-scale-aware modules for crowd counting[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 2382-2389.
|
13 |
LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 11976-11986.
|
14 |
HUANG S , LI X , ZHANG Z , et al. Body structure aware deep crowd counting. IEEE Transactions on Image Processing, 2018, 27 (3): 1049- 1059.
doi: 10.1109/TIP.2017.2740160
|
15 |
DEB D, VENTURA J. An aggregated multicolumn dilated convolution network for perspective-free counting[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 195-204.
|
16 |
SHEN Z, XU Y, NI B B, et al. Crowd counting via adversarial cross-scale consistency pursuit[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 5245-5254.
|
17 |
ZHANG L, SHI M J, CHEN Q B. Crowd counting via scale-adaptive convolutional neural network[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, USA: IEEE Press, 2018: 1113-1121.
|
18 |
CAO X K , WANG Z P , ZHAO Y Y , et al. Scale aggregation network for accurate and efficient crowd counting. Berlin, Germany: Springer, 2018.
|
19 |
XU C F, QIU K, FU J L, et al. Learn to scale: generating multipolar normalized density maps for crowd counting[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 8382-8390.
|
20 |
LI Y H, ZHANG X F, CHEN D M. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 1091-1100.
|
21 |
|
22 |
MA Y M, SANCHEZ V, GUHA T. Fusioncount: efficient crowd counting via multiscale feature fusion[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2022: 468-476.
|
23 |
XU C F , LIANG D K , XU Y C , et al. AutoScale: learning to scale for crowd counting. International Journal of Computer Vision, 2022, 130 (2): 405- 434.
doi: 10.1007/s11263-021-01542-z
|
24 |
祥滨, 吕浩杰. 多尺度注意力机制的双路人群计数网络. 沈阳航空航天大学学报, 2023, 40 (3): 16- 27.
doi: 10.3969/j.issn.2095-1248.2023.03.003
|
|
XIANG B , LÜ H J . Two-way crowd counting network with amulti-scale attention mechanism. Journal of Shenyang Aerospace University, 2023, 40 (3): 16- 27.
doi: 10.3969/j.issn.2095-1248.2023.03.003
|
25 |
SAM D B, SURYA S, BABU R V. Switching convolutional neural network for crowd counting[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 5744-5752.
|
26 |
SINDAGI V A, PATEL V M. Generating high-quality crowd density maps using contextual pyramid CNNs[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 1861-1870.
|
27 |
曾芸芸, 张红英, 袁明东. 多尺度融合的双分支特征提取人群计数算法. 计算机工程与应用, 2024, 60 (20): 224- 232.
doi: 10.3778/j.issn.1002-8331.2305-0427
|
|
ZENG Y Y , ZHANG H Y , YUAN M D . Crowd counting algorithm for multi-scale fusion based on dual branch feature extraction. Computer Engineering and Applications, 2024, 60 (20): 224- 232.
doi: 10.3778/j.issn.1002-8331.2305-0427
|
28 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 30-43.
|
29 |
SAVNER S S , KANHANGAD V . CrowdFormer: weakly-supervised crowd counting with improved generalizability. Journal of Visual Communication and Image Representation, 2023, 94, 103853.
doi: 10.1016/j.jvcir.2023.103853
|
30 |
WANG W H , XIE E Z , LI X , et al. PVT v2: improved baselines with pyramid vision transformer. Computational Visual Media, 2022, 8 (3): 415- 424.
doi: 10.1007/s41095-022-0274-8
|
31 |
WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 568-578.
|
32 |
LI B , ZHANG Y , XU H H , et al. CCST: crowd counting with swin transformer. The Visual Computer, 2023, 39 (7): 2671- 2682.
doi: 10.1007/s00371-022-02485-3
|
33 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
34 |
WANG F S, LIU K, LONG F, et al. Joint CNN and transformer network via weakly supervised learning for efficient crowd counting[EB/OL]. [2023-11-20]. https://arxiv.org/abs/2203.06388.
|
35 |
DAI M L, HUANG Z Z, GAO J Q, et al. Cross-head supervision for crowd counting with noisy annotations[C]//Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2023: 1-5.
|
36 |
|
37 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2117-2125.
|
38 |
RONNEBERGER O , FISCHER P , BROX T . U-Net: convolutional networks for biomedical image segmentation. Berlin, Germany: Springer, 2015: 234- 241.
|
39 |
DAI F, LIU H, MA Y K, et al. Dense scale network for crowd counting[C]//Proceedings of 2021 International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2021: 64-72.
|
40 |
MA Z H, WEI X, HONG X P, et al. Bayesian loss for crowd count estimation with point supervision[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 6142-6151.
|
41 |
袁健, 王姗姗, 罗英伟. 基于图像视野划分的公共场所人群计数模型. 计算机应用研究, 2021, 38 (4): 1256-1260, 1280.
|
|
YUAN J , WANG S S , LUO Y W . Public place crowd counting model based on image field division. Application Research of Computers, 2021, 38 (4): 1256-1260, 1280.
|
42 |
|
43 |
TRAN N H, HUY T D, DUONG S T, et al. Improving local features with relevant spatial information by vision transformer for crowd counting[C]//Proceedings of IEEE/CVF International Conference on Machine Vision. Washington D. C., USA: IEEE Press, 2022: 353-562.
|
44 |
沈宁静, 袁健. 基于残差密集连接与注意力融合的人群计数算法. 电子科技, 2022, 35 (6): 6- 12.
|
|
SHEN N J , YUAN J . Crowd counting algorithm based on residual dense connection and attention fusion. Electronic Science and Technology, 2022, 35 (6): 6- 12.
|