Abstract:
Aiming at the problem of the clustering analysis on massive data for traditional clustering algorithm, this paper proposes a K-means clustering ensemble algorithm based on MapReduce. It generates component clustering results with different number of cluster by the K-means algorithm, improves co-association matrix, and gets a final result automatically via the number of times sample pair co-occurred. Experimental results show that this algorithm can effectively improve the quality of clustering, and has good scalability, fits to clustering analysis on massive data.
Key words:
massive dada,
clustering,
MapReduce framework,
K-means algorithm,
co-association matrix,
clustering ensemble
摘要: 针对传统聚类算法难以高效进行海量数据聚类分析的问题,提出一种基于MapReduce框架的K-means聚类集成算法。利用K-means算法生成不同聚簇数目的基聚类结果,改进共协关系矩阵,依据数据点对出现次数进行集成,自动得出最终聚类结果。实验结果表明,该算法能够有效地改善聚类质量,具有良好的扩展性,适用于海量数据的聚类分析。
关键词:
海量数据,
聚类,
MapReduce框架,
K-means算法,
共协关系矩阵,
聚类集成
CLC Number:
JI Su-qin, SHI Hong-bo. K-means Clustering Ensemble Based on MapReduce[J]. Computer Engineering.
冀素琴,石洪波. 基于MapReduce的K-means聚类集成[J]. 计算机工程.