| 1 | 田野. 基于机器视觉的内螺纹参数检测系统设计[D]. 合肥: 合肥工业大学, 2017. | 
																													
																							|  | TIAN Y. A design of measuring system for female thread parameter based on machine vision[D]. Hefei: Hefei University of Technology, 2017. (in Chinese) | 
																													
																							| 2 | 刘峰. 螺纹检测的机器视觉方法研究[D]. 天津: 天津大学, 2006. | 
																													
																							|  | LIU F. The study on the machine vision method of screw measurement[D]. Tianjin: Tianjin University, 2006. (in Chinese) | 
																													
																							| 3 | 宋帅帅, 黄锋, 江燕斌. 基于机器视觉几何量测量技术研究进展分析. 电子测量技术, 2021, 44 (3): 22- 26.  URL
 | 
																													
																							|  | SONG S S, HUANG F, JIANG Y B. Analysis on the research progress of geometric measurement technology based on machine vision. Electronic Measurement Technology, 2021, 44 (3): 22- 26.  URL
 | 
																													
																							| 4 | PERNG D B, CHEN S H, CHANG Y S. A novel internal thread defect auto-inspection system. The International Journal of Advanced Manufacturing Technology, 2010, 47 (5): 731- 743. | 
																													
																							| 5 | LIN C F, LIN S F, HWANG C H, et al. Real-time image-based defect inspection system of internal thread for nut. IEEE Transactions on Instrumentation and Measurement, 2019, 68 (8): 2830- 2848.  doi: 10.1109/TIM.2018.2872310
 | 
																													
																							| 6 | KOSAREVSKY S, LATYPOV V. Detection of screw threads in computed tomography 3D density fields. Measurement Science Review, 2013, 13 (6): 292- 297.  doi: 10.2478/msr-2013-0043
 | 
																													
																							| 7 | XU R G, HAO R Y, HUANG B Q. Efficient surface defect detection using self-supervised learning strategy and segmentation network. Advanced Engineering Informatics, 2022, 52, 101566.  doi: 10.1016/j.aei.2022.101566
 | 
																													
																							| 8 | 胡欣, 周运强, 肖剑, 等. 基于改进YOLOv5的螺纹钢表面缺陷检测. 图学学报, 2023, 44 (3): 427- 437.  URL
 | 
																													
																							|  | HU X, ZHOU Y Q, XIAO J, et al. Surface defect detection of threaded steel based on improved YOLOv5. Journal of Graphics, 2023, 44 (3): 427- 437.  URL
 | 
																													
																							| 9 | 姜阔胜, 徐瑞, 王迪. 基于深度学习的铜封帽内螺纹缺陷检测研究. 安徽理工大学学报(自然科学版), 2022, 42 (3): 93- 98.  URL
 | 
																													
																							|  | JIANG K S, XU R, WANG D. Research on crack detection of internal thread of copper sealing cap based on deep learning. Journal of Anhui University of Science and Technology (Natural Science), 2022, 42 (3): 93- 98.  URL
 | 
																													
																							| 10 | HUANG L P, DANG A T, HSU Q C. Comparison of different types of lens for defect detection of inner thread based on deep learning[C]//Proceedings of the 25th International Conference on Mechatronics Technology. Washington D. C., USA: IEEE Press, 2022: 1-4. | 
																													
																							| 11 | 赵月, 张运楚, 孙绍涵, 等. 基于深度学习的螺纹钢表面缺陷检测. 计算机系统应用, 2021, 30 (7): 87- 94.  URL
 | 
																													
																							|  | ZHAO Y, ZHANG Y C, SUN S H, et al. Defect detection method of rebar based on deep learning. Computer Systems & Applications, 2021, 30 (7): 87- 94.  URL
 | 
																													
																							| 12 | MUSHTAQ F, RAMESH K, DESHMUKH S, et al. Nuts & bolts: YOLO-v5 and image processing based component identification system. Engineering Applications of Artificial Intelligence, 2023, 118, 105665.  doi: 10.1016/j.engappai.2022.105665
 | 
																													
																							| 13 | 李曦琳, 王向军, 李红伟. 球面镜折反射全向视觉系统理论研究. 宇航计测技术, 2008, 28 (4): 16- 18.  URL
 | 
																													
																							|  | LI X L, WANG X J, LI H W. Research on catadioptric omnidirectional vision system for the spherical mirror. Journal of Astronautic Metrology and Measurement, 2008, 28 (4): 16- 18.  URL
 | 
																													
																							| 14 | 田晓东. 折反射全景成像系统分析与设计. 仪表技术与传感器, 2006, (4): 48- 50.  URL
 | 
																													
																							|  | TIAN X D. Analysis and design of catadioptric panorama image system. Instrument Technique and Sensor, 2006, (4): 48- 50.  URL
 | 
																													
																							| 15 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-08-13]. https://arxiv.org/abs/2207.02696 . | 
																													
																							| 16 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13708-13717. | 
																													
																							| 17 | XUE P P, HU W J, YUE C Y, et al. Thangka Yidam classification based on DenseNet and SENet. Journal of Electronic Imaging, 2022, 31 (4): 043039. | 
																													
																							| 18 | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 01155. | 
																													
																							| 19 |  | 
																													
																							| 20 | 吴志高, 陈明. 基于改进YOLO v7的微藻轻量级检测方法. 大连海洋大学学报, 2023, 38 (1): 129- 139.  URL
 | 
																													
																							|  | WU Z G, CHEN M. Lightweight detection method for microalgae based on improved YOLO v7. Journal of Dalian Ocean University, 2023, 38 (1): 129- 139.  URL
 | 
																													
																							| 21 |  | 
																													
																							| 22 | 戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测. 计算机工程, 2023, 49 (1): 41- 48.  URL
 | 
																													
																							|  | QI L L, GAO J L. Small object detection based on improved YOLOv7. Computer Engineering, 2023, 49 (1): 41- 48.  URL
 | 
																													
																							| 23 |  | 
																													
																							| 24 | WAN S H, GOUDOS S. Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks, 2020, 168, 107036. | 
																													
																							| 25 |  | 
																													
																							| 26 | DONG X D, YAN S, DUAN C Q. A lightweight vehicles detection network model based on YOLOv5. Engineering Applications of Artificial Intelligence, 2022, 113, 104914. | 
																													
																							| 27 |  |